
The Data Base System (TDBS)

Version 1.2

User Manual

An Option module for TBBS Versi,on i.x

by Philip L. Becker
and J. P. McMillan

Copyright 1992 by Philip L. Becker, Ltd.
All Rights Reserved

WARRAN1Y

TDBS is manufactured by eSoft, Inc. We have made every effort
to provide the user with error-free data diskettes. Should there be
difficulty in transferring the data from these diskettes to your
operating system diskette, contact us at (303) 699-6565 (voice) for
replacement.

TDBS is distributed on an "AS IS" basis only, without warranty.
Neither eSoft, Inc. nor its authorized dealers shall have liability or
responsibility to any person or entity with respect to liability, loss,
or damage caused or alleged to be caused by this software. This
includes, but is not limited to, any interruption of service, loss of
business or anticipatory profits, or consequential damage resulting
from the use of this software.

eSoft SOFIWARE SUPPORT

eSoft, Inc., provides a 24-hour-a-daymulti-line support BBS service
to registered TBBS/fDBS system owners at (303) 699-8222 (eSoft
Software Support BBS -- 300/1200/2400/9600 baud modem). We
strongly urge that this telecommunications system be used for error
reporting and troubleshooting assistance. Because all system cor
rections will be distributed first via the eSoft Software Support BBS,
we recommend that all r~gistered licensees log on to the Support
BBS at least once a month to receive latest system update informa
tion. (At your first logon, you will need to register the serial number
of your TBBS master disk(s) and supply a password, which will be
approved for full support access during the next working day.
Other information is given online during the registration process.)

The Data Base System software is distributed without copy preven
tion protection, since we feel that such protection drastically
reduces the utility of a program and punishes most the honest
purchaser. We do, however, expect purchasers ofTDBS to honor
their license agreement. This software is copyrighted, and licensed
to the purchaser for your individual and exclusive use on a single
CPU at a time. Any reproduction for use by other persons is a
violation of our copyright and your license agreement.

THIS SOFTWARE IS NOT FOR SALE

eSoft, Inc. does not "sell" TDBS. It sells only the media it is
contained on. It licenses you the use of the software only under the
following license terms and conditions.

License Agreement

Carefully read the following terms and conditions. Use of this
product constitutes your acceptance of the terms and conditions,
and your agreement to abide by them subject to paragraph 7 below.

1. This is an end-user license. You, the original purchaser, are
granted this license for the use of the TDBS software under the
terms stated in this agreement. You may not assign or transfer the
software or this license to any other person without the express
written consent of eSoft, Inc. Any attempt to sublicense, assign, or
transfer any of the rights, duties, or obligations hereunder is void.
eSoft, Inc. does allow you to transfer this license under the condi
tions outlined on your registration form. This procedure con
stitutes express written consent under this provision if it is followed
properly.

2. The TDBS software is copyrighted material. Once you have paid
the required single copy license fee, you may use the software as
long as you like provided you do not violate the copyright or any of
the following conditions.

3. Single CPU License. You may use the software on any computer
for which it is designed so long as it is not in use on more than one
computer at the same time. You must pay for additional licenses if
you want to use this software on more than one computer at the
same time. You may use the utilities on one computer while the run
time system is in use on another computer, as long as the same
program is not in use at the same time on more than one computer.

4. Backup Copies. You may make as many backup copies of the
software as you require to avoid loss. You are responsible for all
backup copies you make, and must assure they do not result in any
use of the software which would conflict with the provisions of
paragraph 2 above.

iii

iv

5. Software Modification. You may not make any changes or
modifications to the Licensed software not expressly authorized by
eSoft, Inc., Philip L. Becker, Ltd. or their agents. This includes but
is not limited to disassembly and reverse engineering the software.
The single exception granted under this license is the changing of
text strings in the programs for customized presentation.

6. Federal Government. This Software is Commercial Computer
Software under the Federal Government Acquisition Regulations
and agency supplements to them. The Software is provided to the
Federal Government and its agencies only under the Restricted
Rights Provisions of the Federal Acquisition Regulations ap
plicable to commercial computer software developed at private
expense and not in the public domain.

7. You may refuse to abide by this license by returning all materials
within 30 days, along with a written statement that you have kept no
copies of the software or documentation. This statment must be
signed by you and becomes a legally binding statement that you have
indeed destroyed any backup copies you may have made in those
thirty days. If you keep the materials beyond the 30 day period, or
refuse to assure that you have not kept any copies of the software
or its documentation, then you are fully bound by this agreement.

8. Limitation of Liability. In no case shall the Liability of eSoft, Inc.
or Philip L. Becker, Ltd. exceed the license fees paid for the right
to use this software or One Hundred Dollars ($100.00), whichever
is greater.

9. This agreement may not be modified except by a written instrument
signed by eSoft, Inc. This license constitutes the entire agreement
and understanding between you and eSoft, Inc., and supersedes any
prior agreement or understanding whether oral or written relating
to the subject of this License.

Table of Contents

Table of Contents

Chapter 1: Installation

HOW TO USE THIS MANUAL .. 1-1
What's new in TDBS 1.2? : .. 1-2
Installing TDBS on a TBBS system .. 1-3

Installing the TDBS compiler ... 1-3
Installing the TDBS Option Module ... 1-3
TDBSOM Memory Requirements .. 1-5

Adding TDBS programs to a Menu .. 1-6
The HOMEPATH directory ... 1-7

TDBS CONFIG.SYS considerations ... 1-8
Compiling TDBS Source Files .. 1-9

Multiple Procedure Control File ... 1-12
The TDBS Autocompile feature ... 1-13

Chapter 2: Overview

lntroduction ... 2-1
TDBS structure .. 2-1
TDBS compatibility level ... 2-3
Introduction to the TDBS Language .. 2-4
Source Syntax Compatibility .. 2-4
Conditional TDBS commands .. 2-5
Database FDes ... 2-5
Index Files ... 2-6
Commands and Functions ... 2-6
Data Types .. 2-7
Memory Variable Arrays ... 2-8
Operators and Precedence .. 2-1 O
Program Structure and Control .. 2-12
Subroutine Calling ... 2-13
Screen and Keyboard 1/0 ... 2-14

1/0 Commands requiring ANSI terminals .. 2-14
1/0 commands not requiring ANSI terminals 2-14
Keyboard mapping ... 2-16

Memory Usage .. 2-17
Understanding Work Pool Allocation ... 2-18
TDBS Maximum Limits .. 2-20

V

Table of Contents

Command Differences in TDBS ... 2-21
Commands not supported .. 2-21
Command Extensions ... 2-23

Extended Functions .. 2-25
Extended File Sharing Support ... 2-28

DOS File Limits and FCB Sharing .. 2-29
Macro Compatibility .. 2-30
Memory Variable Domains ... 2-31

Private Memory Variables .. 2-31
Public Memory Variables ... 2-32
Hidden Variables .. 2-32

Parameter Passing .. 2-33
Memo field support ... 2-34
The TDBS Memo Editor .. 2-34

Chapter 3: Multiuser Programming

Introduction ... 3-1
Multiuser Overview ... 3-3
TDBS Multiuser Features .. 3-4
Exclusive or Shared files .. 3-6
Explicit Record and File Locking .. 3-7

FLOCK() .. 3-7
RLOCK() .. 3-7
UNLOCK ... 3-7
WAIT 4RLOCK([n]) .. 3-8
WAIT 4FLOCK([n]) .. 3-9
Fielding Locking Conflicts ... 3-9
Sample File Locking Handler .. 3-9
Sample Record Locking Handler .. 3-1 O

Transparent File Sharing .. 3-1 2
Screen Update and Rollback on Collision .. 3-13
SET UPDATE BELL .. 3-13
Hybrid Automatic Record Locking .. 3-14

TDBS Mailboxes .. 3-15
Establishing a Mailbox ... 3-15
Forcing a Mailbox Checkpoint .. 3-16
Sending Man ... 3-16
Receiving Mail .. 3-17
NEWMAIL([wa]) ... 3-17
WAIT4MAIL([n]) ... 3-17
ON NEWMAIL .. 3-18
USING_ BOX field ... 3-18

vi

Table of Contents

Printer Support .. 3-20
WAIT 4LPT(n[,s]) ... 3-20
Printer Control .. 3-21
SET ALTERNATE .. 3-21

Flat File 1/0 .. 3-22
Flat File 1/0 Basics ... 3-22
Line Mode 1/0 ... 3-23
Binary Mode 1/0 ... 3-24

Chapter 4: TDBS Commands

Command Notation Conventions ... 4-1
Element Types used in syntax descriptions 4-2

Summary of TDBS Commands .. 4-3
? I?? ... 4-14
@ ... CLEAR ... 4-15
@ ... SAY ... GET ... 4-16
@ ... TO .. 4-21
ACCEPT .. 4-22
APPEND BLANK ... 4-23
APPEND FROM .. 4-24
AVERAGE ... 4-26
CLEAR .. 4-27
CLEAR ALL ... 4-28
CLEAR GETS .. 4-29
CLEAR MEMORY ... 4-30
CLEAR TYPEAHEAD .. 4-31
CLOSE .. 4-32
CONTINUE ... 4-33
COPY TO .. 4-34
COPY FILE ... 4-35
COPY STRUCTURE ... 4-36
COPY STRUCTURE EXTENDED .. 4-37
COUNT ... 4-38
CREATE .. 4-39
CREATE FROM .. 4-40
DECLARE ... 4-42
DELETE .. 4-44
DIR .. 4-45
DO ... 4-46
DO CASE .. 4-47
DO WHILE .. 4-48
DOTBBS ... 4-50

vii

Table of Contents

EJECT ... 4-51
ERASE .. 4-52
FBREAD .. 4-53
FBWRITE .. 4-55
FCLOSE .. 4-57
FCREATE ..•................................... 4-58
FIND .. 4-60
FLFIND ... 4-61
FLREAD .. 4-63
FLWRITE ... 4-65
FOPEN .. 4-66
FSEEK .. 4-68
GO/GOTO ... 4-70
HALT ... 4-71
IF ... 4-72
INDEX ON .. 4-73
INPUT ... 4-75
LOCATE .. 4-76
NOTE/*/&& ... 4-77
ON DISCONNECT ... 4-78
ON ERROR ... 4-80
ON ESCAPE ... 4-83
ON KEY .. 4-84
ON NEWMAIL. .. 4-85
PARAMETERS .. 4-87
PRIVATE ... 4-88
PROCEDURE ... 4-89
PUBLIC ... 4-90
QUIT ... 4-91
READ .. 4-92
RECALL 4-96
RELEASE .. 4-97
RENAME•.. 4-98
REPLACE .. 4-99
RESTORE ... 4-101
RETURN ... 4-102
RETURN TO MASTER. 4-103
SAVE ... 4-104
SEEK ... 4-105
SELECT .. 4-106
SET ALTERNATE ... 4-107
SET BELL ... 4-108
SET CENTURY ... 4-109
SET COLOR ... 4-110

viii

Table of Contents

SET CONFIRM ... 4-112
SET CONSOLE ...•....................................... 4-113
SET DATE ... 4-114
SET DECIMALS .. 4-115
SET DELETED .. 4-116
SET DELIMITERS ... 4-117
SET DEVICE ... 4-118
SET DISCONNECT .. 4-119
SET DISPLAY RULES ... 4-120
SET DIVIDE BY ZERO .. 4-121
SET EDITOR ... 4-122
SET ESCAPE ...•.. 4-123
SET EXACT ... 4-124
SET EXCLUSIVE ... 4-125
SET FILTER .. 4-126
SET FIXED .. 4-127
SET FORMAT ... 4-128
SET FUNCTION .. 4-129
SET INDEX ... 4-130
SET INTENSITY .. 4-131
SET MARGIN .. 4-132
SET MEMOWIDTH ... 4-133
SET ORDER .. 4-134
SET PRINT •... 4-135
SET PRINTERTO ... 4-136
SET PROCEDURE .. 4-137
SET RELATION ... 4-138
SET SOFTSEEK ... 4-140
SET TYPEAHEAD ... 4-141
SET UNIQUE .. 4-142
SET UPDATE BELL .. 4-143
SKIP .. 4-144
STORE .. 4-145
SUM•... 4-146
TEXT ... 4-147
TYPE ... 4-148
UNLOCK ... 4-149
USE•... 4-150
USE MAILBOX .. 4-152
WAIT ... 4-153
ZAP ... 4-154

ix

Table of Contents

Chapter 5: TDBS Functions

Function Overview .. 5-1
Summary of TDBS Functions ... 5-2

ABS0 ··5-14
ACOPYQ ... 5-15
ADELQ .. 5-16
AFIELDSQ ... 5-17
AFILLO .. 5-18
AINSQ ... 5-19
AUASO ··· 5-20
ASCAN0 ··· 5-21
ASORTQ/ADSORT0 ... 5-22
ASC0 .. 5-23
ATQ ... 5-24
BOFQ .. 5-25
CAPFIRST0 .. 5-26
CDOWQ .. 5-27
CEILING0 ... 5-28
CHRQ .. 5-29
CMONTH0 ... 5-30
COLQ .. 5-31
CRTRIM0 .. 5-32

CTOD0 ···5-33
DATEQ .. 5-34
DAYQ .. 5-35
DBF0 .. 5-36
DEC2HEXQ ... 5-37

DELETED0 ·· 5-38
DESCEND0 .. 5-39
DISKSPACE0 ... 5-40
DOTBBSQ ... 5-41
DOWQ ... 5-42
DTOCQ ... 5-43
DTOSQ .. 5-44

EMPTY0 ··· 5-45
EOFQ .. 5-46
ERROR0 ··· 5-47
EXPQ ... 5-48
FBEXTRACTQ ... 5-49
FBFILLQ .. 5-50
FBINSERT0 .. 5-51

X

Table of Contents

FBMOVE0 ·· 5-52
FCOUNTQ ... 5-54
FDATE0 .. 5-55
FERRORQ ... 5-56
FIELDQ ..•... 5-57
FILEQ .. 5-58
FINDFIRST0 ... 5-59
FINDNEXTQ .. 5-61
FKLABEL0/FKMAX0 .. 5-62
FLEN0 .. 5-63

FLOCK0 ·· 5-64
FLOOR0 ... 5-65
FMAXLEN0 ... 5-66
FOUNDQ ... 5-67
FSIZEQ .. 5-68
FTIMEQ ... 5-69
GETENV0 ... 5-70
GETLPTQ .. 5-71

HARDCR0 ·· 5-72
HEX2DECQ ... 5-73

HOMEPATH0 ··· .. 5-74
IIF0 •...•... 5-75
INDEXEXTQ .. 5-76
INDEXKEYQ .. 5-77
INDEXORD0 ... 5-78
INKEYQ ... 5-79
INTQ .. 5-80
ISALPHAO ... 5-81
ISINTO ... 5-82
ISLASTDAY0 .. 5-83
ISLEAP0 ... 5-84

ISLOWER0 ··· 5-85
ISSHARE0 ·· 5-86
ISSTATE0 ... 5-87
ISUPPER0 .. 5-88
LASTDAY0 ...•.................... 5-89
LASTKEY0 ··················· ... 5-90
LEFTQ ... 5-91
LENQ ... 5-92
WUSTQ ... 5-93
LOGQ .. 5-94
LOWERQ ... 5-95
LTRIM0 ... 5-96
LUPDATE0 ... 5-97

xi

Table of Contents

MAX0 .. 5-98
MESSAGE0 .. 5-99
MIN0 ... 5-1 00
MOD0 ... 5-101
MONTH0 .. 5-102
NDX0 .. 5-103
NEWMAIL0 ... 5-104
NEXTKEY0 ... 5-105
NMYUSERS0 ... 5-106
NUSERS0 ... 5-107

OPTDATA0 ··· 5-108
oso ··· 5-1 09
PCOL0 .. 5-11 0
PROCUNE0 ... 5-11 1
PROCNAME0 ... 5-112
PROW0 .. 5-113
RAT0 ... 5-114
READKEY0 ... 5-1 15
RECCOUNT0/LASTREC0 ... 5-11 7
RECNO0 .. 5-11 8
RECSIZE0 .. 5-119
REPLICATE0 .. 5-1 20

RIGHT0 ·· ······ ····· ·····················5-121
RJUST0 .. 5-122
RLOCK0/LOCK0 .. 5-1 23
ROUND0 .. 5-124
ROW0 ... 5-125
RTRIM0/TRIM0 .. 5-1 26
SECONDS0 .. 5-127
SELECT0 .. 5-128

SETPRC0 ··· 5-129
SOUNDEX0 .. 5-130

SPACE0 ··· 5-132
SQRT0 .. 5-133
STATENAME0 .. 5-134
STR0 ... 5-135
STUFF0 .. 5-136

SUBSTR0 ··· 5-137
TIME0 ... 5-138

TRANSFORM0 ··· 5-139
TYPE0 .. 5-140

UANSI0 ·· 5-141
UAUTH0 ... 5-142

UIBM0 ·· 5-143

xii

Table of Contents

ULINE0 ... 5-144
ULOCATIONQ .. 5-145

ULPEEK0 ·· 5-146
ULPOKEQ ... 5-147
ULREPLACEQ ... 5-149
UMOREO .. 5-150
UNAMEQ ... 5-151
UNOTESQ ... 5-152
UPDATEDQ ... 5-153
UPPERQ .. 5-154
UPRIVQ ... 5-155
USING0 .. 5-156
UWIDTHQ ... 5-157
VALQ ... 5-158
VERSIONQ .. 5-159
WAIT 4FLOCK0 ... 5-160
WAIT4LPTQ .. 5-161
WAIT4MAILQ .. 5-162
WAIT 4RLOCKQ ... 5-163
YEARQ .. 5-164

Chapter 6: Technical Information

How TDBS handles loss of carrier ... 6-1
dBASE File Compatibility .. 6-2
TDBS .DBF File Format. .. 6-3
TDBS .NDX File Format .. 6-5

Index File Header Record Format ... 6-6
Index Leaf Record Format ... 6-7

TDBS .MEM File Format ... 6-8

xiii

I INSTALLATION

Chapter 1: Installation

HOW TO USE THIS MANUAL

READ THE NEXT TWO PAGES,
EVEN IF YOU DON'T READ ANYTHING ELSE.

Installation

How to Start

Introduction

Multiuser
Considerations

Command
Reference

Function
Reference

Technical

Many people only read their user's manual as a last resort. If you
are one of those, the next two pages tell you where to find informa
tion when you need it.

To learn how to install The Data Base System on your computer
for the first time, read the Installation section of this chapter.

To learn how to compile programs and run them on your TDBS
system, read the sections of this chapter on Compiling TDBS
source files and Adding TDBS programs to a Menu.

Chapter 2 is an introduction to The Data Base System. This chapter
will give you a frame of reference and introduce you to the concepts
behind TDBS. If you are already familiar with dBASE III+
programming, this chapter is all you will need to read to begin using
TDBS.

Chapter 3 explains the special cases you must consider when
programming applications for multiuser access. You will learn here
about how TDBS automatically shares files without damage, and
how you can exercise more control in special cases if you need to.

Chapter 4 is a reference guide for TDBS commands. Each com
mand is listed here (in alphabetical order) so you can find the
details of its operation easily. This is a reference, not a tutorial
section.

Chapter 5 is a reference guide for TD BS functions. Each function
is listed here (in alphabetical order) so you can find the details of
its operation easily.

Chapter 6 contains the Technical specifications of interest to
programmers who wish to write custom utilities or programs which
require more technical details. Included is a bit map and record

1-1

Chapter 1: Installation

layout of all data structures with which you might need to interface
if you write specialized utility programs etc.

You should begin by reading the overview section of this manual to
learn the concepts ofTDBS in a general way. Then you may begin
to write TDBS programs of your own or compiling dBASE III+
programs to run under TDBS.

What's new in TDBS 1.2?

1-2

TDBS 1.2 has several enhancements over TDBS 1.1. However, all
.TPG programs which were compiled and running in TDBS 1.1 will
continue to execute properly under TDBS 1.2. The following is a
summary of the most important TDBS 1.2 enhancements.

• Flat File 1/0 bas been implemented to allow direct access to any
type of file. Both text mode (line at a time) and binary mode are
available.

• Rapid text searching is now possible using the text mode Flat
File 1/0 command FLFIND.

• The SOUNDEX function is now available to allow "sounds like"
keyword operations.

• The boolean functions .AND., .OR. and .NOT. now operate on
numeric variables. This allows true bit operations on up to 32
bit numeric values.

• The SELECT option on READ allows direct entry into the
memo editor without user intervention.

• READONLYaccess allows use of protected .DBF files.

• FINDFIRST, FINDNEXT, FDATE, FTIME, and FSIZE
functions provide robust file handling capability.

• SET ALTERNATE now allows APPEND operation for
journaling.

• Faster operation and smoother scheduling for better overall
system operation.

Chapter 1: Installation

Installing TDBS on a TBBS system

TDBS is comprised of two portions.

1. The TDBS compiler which translates ASCII source code into
compiled token program (.TPG) files.

2. The TDBSOM option module which allows these compiled token
program files to be executed online on a TBBS system. This option
module manages all multiuser actions, and contains the library
routines which allow a .TPG program to interface to TBBS.

Note: TDBS is designed to be installed on a working
TBBS system. If you have not yet installed your TBBS
system, then that is the first step. Do not attempt to
install TDBS until TBBS has been installed and is
operating correctly.

Installing the TDBS compiler
The TDBS compiler is contained in a single file named TD BS.EXE
and is a stand alone DOS program. Installation consists of copying
this file to your hard drive. To allow its use from any directory
during program development, the directory you place the
TD BS.EXE file in should be listed in the DOS PATH directory list.

Installing the TDBS Option Module
The TDBS option module is installed by copying the files
TDBSOM.EXE and TDBSEMSG.TXT to your hard disk. These
files should be placed in the same directory as your TBBS run time
program MLTBBS.EXE. You then must modify the
RUNBBS.BAT command which invokes TBBS by adding the fol
lowing command line switch:

/0:TDBSOM

1-3

Chapter 1: Installation

1-4

As an example if the calling line before installing TD BS was:

MLTBBS/U/F

After installing TD BS this calling line would read:

MLTBBS /U /F /0:TDBSOM

If you must place the TDBSOM.EXE file in another directory, you
must list the entire specification of where you placed it. As an
example, if you placed the TDBSOM.EXE file in the D:\TDBS
directory, then the calling line would be:

MLTBBS /U /F /0:D:\ TDBS\ TDBSOM

If you already have another option module installed, then separate
the module names with commas on the /0: specification. As an
example, if you already have the SYSOM option module installed
the specification would be:

MLTBBS /U /F /0:SYSOM,TDBSOM

The position of TDBSOM in the option module list is not sig
nificant.

Chapter 1: Installation

TDBSOM Memory Requirements
Once the TDBS option module is installed, your system will require
more memory to operate than it did before you installed TDBS.
The extra memory required for this option module is:

OM CODE memory = 123,666 bytes
OM UDATA memory = 49,152 bytes/user conventional memory

or 48k/user EMS memory

The OM CODE memory must fit in the 640k conventional memory
on your computer, while part or all of the OM UDATA memory may
go in either conventional or EMS memory.

Note: Because TDBS uses the maximum OM UDATA
memory allowed by TBBS, the OM UDATA memory
used by any additional Option Modules doesn't need
to be considered when calculating required memory
size. The only additional memory any other option
modules will use is the OM CODE memory they require.
Add the amount of OM CODE memory required by each
of the other Option Modules you are running to that
required by TDBS and use that total value as the OM
CODE memory requirements in the following formulas
to obtain the required memory to run all of the option
modules simultaneously.

The total extra memory required may be calculated as 123,(,66 +
(49,152*users). For example if you have 5 lines configured in
CED IT, there are really 6 users (the console is a user too) and thus
the memory required to install TDBSOM on a 5 line 2.lM system
is:

123,(,66 + (49,152*6) = 418,578 bytes.

Note: The 123,(,66 bytes of OM CODE memory must be in conven
tional memory. The 294,912 bytes of OM UDATA memory may be
EMS memory, or divided (in 48k "chunks") between EMS and
conventional memory. Thus the maximum EMS memory required
by the TDBSOM (on a 32 line system) would be 1,584k if all users
were placed in EMS memory.

1-5

Chapter 1: Installation

Adding TDBS programs to a Menu

1-6

When the TDBSOM option module is installed, a new command
type becomes available for use in menus. This command becomes
like any other TBBS menu command and may be used in any menu
as you wish. The new command is:

1YPE=200

This command means "execute a TDBS program" and the Opt Data
field syntax is:

OPT DATA = [d:)[\path\)filename[.ext] [/Q][/U:n)[/OU)[/HP]

d: specifies the drive with the compiled TDBS program file. If not
specified, the default drive is assumed.

\path\ specifies the subdirectory which contains the compiled
TDBS program file. If not specified, the current path for the
specified drive (or default drive if d: not specified) is assumed.

filename is the name of the TDBS compiled program.

ext is the extension of the TDBS compiled program. If no extension
is given, then the normal one of .TPG is assumed.

IQ is an optional switch which will cause the TDBS copyright and
normal exit messages to be suppressed when this program is run.

/U:n is an optional switch which limits the number of simultaneous
users of TDBS. If "n" or more users are currently in TDBS when
this menu item is invoked, TDBS will exit immediately with an error.
Note: this option cannot be used to increase the maximum number
of users above your licensed limit.

/HP is an optional switch which restricts all file accesses by this
program to the HOMEPATH() directory (see below). Any at
tempt to access a file in another directory will generate an error if
this switch is specified.

IOU is an optional switch which changes the operation of the
ULINE() function to the format it had prior to TBBS 2.2. Some
older programs may require this switch to operate correctly.

Chapter 1: Installation

Example:

Entry:
< R > on sample TDBS program
KEY= R 1YPE = 200 OYf DATA= D:\ TDBS\SAMPLE /Q

This will run the compiled TDBS program named SAMPLE.TPG
which resides in the TDBS subdirectory on drive D: and will sup
press the TDBS copyright message.

Because all TDBS programs are invoked by using the normal TBBS
menu command structure, all security, authorization, and privilege
options are available. Any number of menu entries may run TDBS
programs, just as any other TBBS command.

The HOMEPATH directory
The drive and path specified (or defaulted) in the Opt Data
specification when a TDBS program is loaded becomes known as
the HOMEP ATH directory for that program run. This is the drive
and directory where the .TPG program resides, and all database
files are assumed by default to be there also while the TDBS
program is running.

Unless overridden by an explicit path specification, TDBS will
assume that all files referenced by this run of the TDBS program
reside in the HOMEPATH directory. Thus the HOMEPATH
directory in a TDBS program takes on the same characteristics as
the default logged on directory does when a stand alone dBASE
program is run under DOS.

The HOMEPATH directory may be overridden by explicitly
specifying a drive and/or path in any file specification in the TDBS
source code (unless the /HP switch was specified in Opt Data). The
HOMEPATH default allows you to easily group a program and its
files in a single sub-directory without ever specifying that drive or
subdirectory explicitly in the TDBS source. This allows easy por
tability of applications.

The TDBS program may learn what its HOMEPATH directory
and drive are while it is running by using the TDBS extended
function HOMEPATH() which returns a string with the drive and
path designator.

1-7

Chapter 1 : Installation

TDBS CONFIG.SVS considerations

1-8

Since TDBS can run programs which open many files, you may need
to increase the number of FILES= and BUFFERS= in your DOS
CONFIG.SYS file. To determine if this is so, you need to know the
following about how TDBS uses DOS file resources.

FILES=

TDBS will only use one FILE= block for a file, even if
it is opened by many users at the same time. Thus if
you are running many copies of the same program, you
only need to count the maximum number of files it may
have open at once, since all users of the program will
use the same DOS FCB entry for each file.

If, on the other hand, several users are running different programs
that access many different files, then you will need to consider this
and adjust the FILES= specification accordingly. The maximum
files that TBBS will allow all users to have open at once is 150. The
normal TBBS installation sets the FILE = to a value which allows
two open files per user. You may need to adjust this higher if you
anticipate a lot of different files open at once under TDBS. The
notification you receive if you don't have FILES = set high enough,
is that TDBS will report the error message:

TOO MANY FILES OPEN

You add more files by modifying the FILES = value in the file
CONFIG.SYS which resides in the root directory of the DOS boot
drive (usually C:). See also DOS File Limits and FCB Sharing in
Chapter 2 for more information.

BUFFERS=

This parameter is less important in that TBBS/fDBS will not
malfunction if it is set improperly, it will just suffer performance
problems when the system is heavily used. This setting is a tradeoff
of conventional memory usage against performance. Usually you
do not need to increase this setting for TDBS.

Chapter 1: Installation

Compiling TDBS Source Files

sourcefile

@sourcefile

The TDBS compiler reads one or more source files and optionally
generates a compiled token program file and listing file. The TD BS
command line syntax is:

TDBS [@Jsourcefile (tpgfile (listingfile]] [option switches]

[d:](path]filename(.ext) of the main .PRG source file to be com
piled.

[d:](path]filename[.ext] of the .TDB multiple file specification file.
This is a file which lists each file to be compiled, and allows optional
switches on each file. It is used either in the rare case where the
autocompile feature does not find all required files, or where
different options are desired on different portions of the compila
tion. (see description below).

tpgfile [d:](path]filename[.ext] of the .TPG token program output file. This
is the file that TDBSOM can execute online.

listingfile [d:](path)filename(.ext) of the .LST file which contains the com
piled listing with line numbers and all included files.

option switches The following Command Line Option Switches are supported by
the TDBS 1.2 compiler:

/l Send a listing to the console.

/DB Insert special debug information in the .TPG file. This will allow
the full source line to be listed at run time in case of an error.
Normally, only the source line number, along with the procedure
or subroutine name is listed. This option enhances debug, but
creates a much larger .TPG file than would otherwise be required.

/XDB Don't insert special debug information (default)

/S Search .PRG directory for missing procedures. This is the
autocompile feature, and is usually wanted. (default)

/XS Don't search for undefined procedures. This option disables the
TDBS autocompile feature.

1-9

Chapter 1: Installation

/XC Comment lines which begin with"*@" are not comments. TDBS
will logically strip the *@ and compile these lines. This allows
TDBS Specific commands to be embedded in a program which can
still be run correctly under other dBASE compilers or interpreters.

/GLOSS bytes This compiler switch is used to change the allocation of the run time
global glossary from the default. The global glossary is the TDBS
symbol table, and consists of two portions. The static portion is
generated at compile time and consists of all symbols to which
direct reference is made in the source. The run time portion
consists of symbols which are not defined until the program ex
ecutes. Such symbols include field names that are not referenced,
and variable names which are only referenced through macros or
RESTORE operations.

Example:

1-10

By default the TD BS 1.2 compiler will assign a default value for the
run time portion of the global glossary of either 10% of the static
glossary size or 1024 bytes whichever is larger. In order to assure
total compatibility for any programs which were developed using
TD BS 1.0 or TD BS 1.1, the total glossary size (static plus run time)
will never be less than 4300 bytes.

These defaults will almost always be satisfactory, but you may use
the /GLOSS compiler switch to change this run time allocation.
The maximum total global glossary (static + run time) allowed is
12k. When the total grows beyond 4300 bytes, memory is allocated
from the disk 1/0 buffers so asking for extra space can slow down
performance of the program.

If TDBS cannot allocate the static glossary space at run time, the
program will abort when it is selected. If the requested run time
glossary space is not available, the program will still begin execution
as long as at least a 128 byte run time glossary and/or a 1024 byte
1/0 buffer space is available.

If a program runs out of run time glossary space while executing,
the usual error message you will receive is "Unable to create
variable". If you request too large a run time glossary resulting in
not enough 1/0 buffer space, you will receive out of memory error
messages.

/GLOSS 2000

This switch requests that the run time glossary have 2000 bytes.

Chapter 1: Installation

/DIBUF Because of the limited memory available (see TDBS run time
memory usage) TDBS only reserves memory for three index buf
fers. This switch tells the TDBS run-time module to dynamically
allocate extra index buffers from any free space in the global
glossary. The compiler statistics will display the maximum number
of DIBUFs the program can allocate at run time. The /GWSS
command can be used to increase the run time glossary to allow
more DIBUFs to be allocated at the expense of memory in the work
pool. DIBUFs can dramatically speed up many programs.

/FGLOSS bytes When /DIBUF is used, this switch indicates the minimum number
of run-time glossary bytes to keep free for a single instruction. By
default /FGLOSS 256 is used. This is sufficient for most programs,
but if a program gives any form of "out of memory error" when you
add /DIBUF, but runs normally without /DIBUF, then it requires
a /FGLOSS with a value larger than 256.

/GETPOOL bytes This switch allows you to set the siz.e of the memory area used by
TDBS to hold GET command information for READ. By default
/GETPOOL 2248 is used for compatibility with previous versions.
You may set the GETPOOL to any siz.e from O to 16,535 bytes.
Note: The memory used by the GETPOOL is removed from the
work pool. /GETPOOL with a value less than 2248 will increase
work pool space when only a small number of GET commands are
used.

/REL11 This switch causes the TDBS 1.2 compiler to generate .TPG files
in the format of the TD BS 1.1 compiler. It must be used if you are
compiling a program that is to be run on any TDBSOM prior to
TDBS 1.2. The compiler will also disallow any use of commands
or functions that would not work on TDBS versions prior to 1.2.

Note: The format of the .TPG file changed with version 1.2 to allow
performance improvement. TDBSOM 1.2 will detect prior version
.TPG formats and execute them correctly, however this run-time
format conversion does cause a program to run slower than it will
if it is re-compiled in the TD BS 1.2 format.

1-11

Chapter 1: Installation

1-12

Multiple Procedure Control File
Most TDBS programs will have more than one source file. This
allows modular development. and keeps any individual portion of
the program to a manageable size. However, the TDBS compiler
needs to know about all of the source files it must compile and link
together to produce a complete program file. The .TDB multiple
procedure control file allows you to specify explicitly which files are
to be included in the compile. A .TDB file is invoked by using it as
the source file name in the TDBS compiler command line, but
preceding it with an "@". Control files have the following syntax:

1. The general syntax is identical to .PRG files. "*", "NOTE", and "&&"
are comments, blank lines are ignored, and ";" indicates continua
tion.

2. Each non comment line specifies the next file to compile. This line
has the format:

[d:\path\]filename[.ext] [switches] [&& comment]

If [d:\path] is not specified, then the file is assumed to be in the
same directory as the .TDB control file itself.

If [.ext] is not specified, .PRG is assumed.

[switches] /DB or /XDB may be specified for each file to limit which
files compile with the special debug information. Note: at least one
space must be placed between the file name and any switches. If no
switch is given, the DB option defaults to the setting given (or
defaulted) on the command line.

Leading blanks are allowed on .TDB file lines.

3. The first file specified is the MAIN program. Execution will begin
with the first statement of this program.

Chapter 1: Installation

The TDBS Autocompile feature
When a .TDB control file is not used, TDBS is given the name of
the MAIN program file. If the /XS option switch is specified, then
only the named file will be compiled. However, by default, TDBS
assumes the /S switch and uses SET PROCEDURE TO, SET
FORMAT TO and DO commands to automatically find and com
pile all of the procedures required to build the program. This mode
usually allows a main TDBS program and its associated procedure
and subroutine files to be compiled into a single .TPG file with no
modifications, and without the trouble of building a control file.

When TDBS is in autocompile mode the main program (the one
specified on the command line) is compiled first. Any files named
by DO, SET PROCEDURE TO, and SET FORMAT TO com
mands which are undefined at the end of the main program are put
on a list. The first file on this list is compiled next, and the
procedure is repeated until all external references are resolved.

Special considerations when using autocompile
1. You may not have procedure files and subroutines which have the

same name.

2. All program files must have the extension .PRG. This means that
files referenced on a SET FORMAT TO must be renamed from
.FMT to .PRG in order to be found correctly by autocompile.

3. All program files must reside in the same disk directory as the main
program which is referenced on the TDBS command line.

1-13

I OVERVIEW

OVERVIEW

Introduction
Chapter 2: Overview

The Data Base System (TDBS) provides the capability to write
dBASE (xBASE) language programs which can be run under
TBBS. With multiline TBBS this means that up to 64 users can run
the same program at the same time. Because each program be
comes a TBBS menu entry, an unlimited (except by disk space)
number of programs may be placed online. TDBS handles file
locking and other multiuser considerations transparently, making
writing multi-user applications as easy as possible. It also fully
supports the dBASE III Plus standard explicit file and record
locking capabilities, but these are not required for file protection,
only for explicit program control in special circumstances.

In this chapter we will introduce you to TDBS, and the overall
structure and operation of it. Issues of compatibility with dBASE
III Plus, dBXL, Quicksilver, FoxBASE, Clipper, etc. are discussed
as well as TDBS extensions to the language and use in the TBBS
multiuser environment. Finally some of the more technical con
siderations of TDBS (e.g. maximum memory and program sizes)
will be introduced. It is assumed you are already familiar with the
dBASE language and only need to know about the TDBS dialect.

TDBS structure

A TDBS program begins with one or more ASCII source files
containing dBASE language instructions. These source files are
compiled by the TDBS compiler and become a single "token pro
gram" (.TPG) file. The TDBSOM option module directly executes
these .TPG files as specified by TBBS menu entries.

TDBS is technically known as a P-code compiler. This means that
the compiler translates the source code into a "pseudo-code" form
which is executed by the TDBSOM option module. This im
plementation allows faster execution and smaller online program
sizes than the dBASE III Plus interpretive execution of the source
file. It also allows the TDBSOM option module to retain enough
execution control to fully utilize the TBBS scheduler for system
efficiency, and prevent errant programs from damaging other
TBBS users or crashing the system. Finally, it allows programs to
be distributed without releasing the source code.

2-1

Chapter 2: Overview

2-2

The following diagram shows the relationships between the TDBS
program source, .TPG program file, and the TDBS compiler,
TDBSOM execution module, and the TBBS platform on which it
runs.

Main Program
.PRG source

Procedure .PRG
source

Format .FMT
source

TBBS Menu Entry
with Type= 200

command

TDBS
Compiler

Compiled
Token Program

.TPG File

Subroutine
.PRG source

Subroutine
.PRG source

TDBSOM
Option Module

TBBS
Execution
Platform

Note that to execute the program only the .TPG file and the
TDBSOM option module are required. The program source and
TDBS compiler are not required at run time.

Chapter 2: Overview

TDBS compatibility level

The target level of compatibility for TDBS is the dBASE III Plus
program language. TDBS is not 100% compatible with dBASE III
Plus and these differences arise for the following reasons:

• TDBS is a compiler while dBASE III Plus is an inter
preter. Thus some dBASE commands make no sense in
a compiled environment and are not present in TDBS.

• TDBS data memory is limited to 48k per user, while
dBASE is free to use as much of the 640k memory as is
needed. TDBS thus has some memory limit constraints
which dBASE does not have.

• The full screen interactive built in commands (such as
EDIT, BROWSE etc.) are not implemented. The full
screen @SAY ... GET and READ commands must be
used to explicitly code such constructs.

• Because TDBS runs under TBBS, extensions have been
added to the language to take advantage of that
environment. These enhancements are not backward
compatible with other dBASE language dialects.

• TDBS has implemented Transparent Locking and
Automatic Locking in addition to the dBASE standard
Explicit File and Record Locking for shared file access.
TDBS also provides Screen Update and Rollback on
Collision allowing transparent visual record sharing as
well. These capabilities allow TDBS to handle
multiuser file accesses smoothly in ways which are
impossible in most dBASE language dialects. See
Chapter 3 for a full discussion of transparent, automatic,
and explicit file and record locking multiuser
programming considerations, as well as transparent
shared screen updates.

2-3

Chapter 2: Overview

Introduction to the TDBS Language

TDBS allows you to write programs in the dBASE language which
can then be run by users on a TBBS system. This chapter will give
an overview of that language and how it is used to access files and
write program control structures. It will also discuss the com
patibility of TDBS to the de facto standard xBASE language. This
chapter is not intended to teach you the language if you have never
programmed before. Supplementary materials on the dBASE lan
guage are widely available in your local bookstore, to teach you
programming at both beginning and advanced levels.

Source Syntax Compatibility

2-4

TDBS will directly compile both .PRG source files and .FMT
format files which were written to be used by dBASE.

TDBS follows 100% of the syntax rules of dBASE III Plus. Source
lines are limited to 254 characters in length, the comment conven
tions are all identical, Upper and Lower case are treated the same,
and the legal character set is the same. In this regard, all source
coding conventions and methods which work with dBASE III Plus
will work identically with TDBS.

While dBASE III Plus exhibits some "quirkiness" when a variable
or field name is longer than 10 characters, TDBS will allow any
number of characters to be used, but the name is only significant to
the first 10 characters.

All commands may be abbreviated to four characters, and function
names may be abbreviated to their shortest significant length, which
is also usually four characters.

Chapter 2: Overview

Conditional TDBS commands

TDBS has conditional compilation capability so that lines may be
marked as comments for other xBASE dialects, and still contain
valid TDBS commands. The syntax of this extension is:

*@< command line>

Because this line begins with an asterisk (*) it is normally treated
as a comment. While it will always be treated as a comment by other
xBASE dialects, if you set the /XC switch on the TDBS compiler,
the *@ is logically removed from the front of the line and the
command will be compiled as part of the program source. This
allows you to have TDBS specific commands in source files which
will be ignored by other xBASE language dialects.

Additionally the variable name TDBS may be used to determine if
a program is running under TDBS. If this variable is declared
PUBLIC, all other xBASE language dialects will assign it a value of
.F. by default. Under TD BS, this variable will be assigned the value
.T. and thus may be used to determine if a program is running under
TDBS or another xBASE dialect.

Database Files

Database files store data which most TDBS commands can operate
on. A database file is made up of records which in turn are
comprised of fields. Each field is given a name (up to 10 characters
long) in TDBS, and has a data type and length. This fully defines
to the TDBS language what sort of data is stored in each field. Up
to 10 database files may be open at the same time in TDBS. A file
is opened by the USE command which positions it to the first
record. The fields of the current record are immediately available
for use in any TDBS expression, as part of any command which can
reference data. The SKIP and GOTO commands change the
record number and perform the read function from the database
file. Reading is implied rather than explicitly specified in TDBS.
When a database file is positioned, the data "appears" in each
named field for that record immediately when the field is refer
enced.

2-5

Chapter 2: Overview

Index Files

Index files are used to allow rapid access and data ordering in a
database file. Each index file is a sorted list of key expressions
calculated from each record in the corresponding database file.
This file is in a special format which allows TDBS to rapidly look
up the indexed keys to locate the record they are part of. When a
USE command specifies a master index file associated with a
database file, then the order of the database file appears to be the
sorted order of the keys in the index file. This is a powerful
capability for organizing access to database files

More than one index file may be associated with a database, but
only one is "in control" at any time. The remainder of the index files
must be listed, however, so that TDBS will know to keep them
updated if any of the fields they index are updated, or if new records
are appended to the database file.

Commands and Functions

2-6

The xBASE language which TDBS uses is implemented as a series
of commands and functions. Each source line begins with a com
mand which indicates the overall action that line will perform. The
remainder of the line is comprised of either keywords or expres
sions which control the specific action of that instruction.

The xBASE language expression implementation is responsible for
much of its flexibility and power. A robust and complete expression
evaluator allows much work to be done in a single expression.
While memory variables, literal values, and database fields may be
part of an expression, a function may also be used as any argument.
A function returns a value (which has one of the four allowed types)
and behaves identically as a variable of the same type would in an
expression.

Functions can perform data transformations, return status values,
do keyboard input, and perform control functions as they are
evaluated in an expression. TDBS has extended the already large
dBASE library of functions to give you more capabilities. See
Chapter 5 for a complete list ofTDBS functions.

Data TyPeS

Chapter 2: Overview

When you store information in databases or memory variables, the
data must be one of four data types. These types are character,
numeric, date, and logical. TDBS is 100% compatible with these
data types. The following are the characteristics of each data type:

Character: This data type can store "strings" of characters up to 254
characters in length. It is used for such things as names and
addresses etc. Any valid character may be stored in a string.

Numeric: This data type can store numbers up to 19 digits long
(including the plus or minus sign and decimal point). Numeric
accuracy is 15.9 digits, excluding the decimal point, which means
that the 15 most significant digits in the number will be reliable.
When non-zero numbers are compared, numeric accuracy is
reduced to 13 digits. While there are only 15.9 significant digits,
the range of values is much larger. The lar~t allowable number
is 10308• The smallest positive number is 10· .

Date: This data type stores dates in MM/DD/YY format. Date
arithmetic is supported, and dates may be in the range from
01/01/100 through 12/31/2099.

Logical: This data type stores one of two conditions. These are
referred to as true (.T.) or false (.F.). Though always stored as true
or false, they may be optionally entered or displayed as Yes (.Y.)
and No {.N.) if desired.

When these data types are stored in the MEMV AR area of your
program they take the following amount of memory each:

Character: 2 + number of characters
Numeric: 9 bytes
Date: 9 bytes
Logical: 2 bytes

2-7

Chapter 2: Overview

Memory Variable Arrays

Example:

TDBS 1.2 has also extended the dBASE language to allow the
definition and use of one-dimensional memory variable arrays. The
limit on the number of arrays you declare and the size of these
arrays is determined by the MEMV AR memory limit of 6k.

Arrays may be passed as parameters to procedures and they have
the same domain rules as memory variables (see Parameter Passing
and Memory Variable Domains later in this chapter). Additionally
there are a number of extended functions to allow you to insert,
delete, sort, scan and fill an array with values.

In any expression, an array element may be used just as any memory
variable. Array elements are referenced by placing their subscript
in square brackets following the array name. An entire array is
referenced when the array name is used without a subscript.

DECLARE sample[20]
STORE 1 TO sample[l], sample[S]
sample[2] = sample[l] + sample[S]
? sample[2] && Result: 2

This example shows how array elements may be used as normal
memory variables. The only exception is that the SA VE and RE
STORE commands do not save and restore array elements.

Array Creation: Arrays may be created by the DECLARE, PRIVATE, and
PUBLIC commands. DECLARE and PRIVATE operate identi
cally in defining an array in the current procedure domain.
PUBLIC defines and array with global domain. If an array has
been defined already in the current procedure domain and a
DECLARE or PRIVATE is issued with the same array name, then
the current array is released and a new, empty array with the
specified dimension is defined in the current procedure domain. If
an array was defined as PUBLIC, a new PUBLIC command issued
on the same array name will release the current array and define a
new empty array with the new dimension.

2-8

At the time of an array's creation, all of its elements are undefined.
Each element may be defined as a separate data type, and an array
can have a mixture of defined and undefined elements.

RELEASEing
arrays and
elements

Implicit
Release

Array Memory
Requirements:

Chapter 2: Overview

An array may be undefined by using the RELEASE command. A
RELEASE ALL [LIKE/EXCEPT <skeleton>] will select entire
arrays in the same manner as it selects normal memory variables to
release. An array selected in this manner has all of its elements
released and the array structure itself is also released. An entire
array is also released if only the array name is specified.

A RELEASE of one or more specific array elements will only
release that element. The array will remain defined, and any other
defined elements not specified in the RELEASE command will
retain their values. Even if every individual element of an array is
specified explicitly on a RELEASE command, the array itself will
remain defined.

An array will also be released if either the PUBLIC or PRIVATE
command are issued with the array name and no dimension. In that
case, the current array is released and the normal PRIVATE or
PUBLIC action is taken which turns that name into a scalar (non
array) memory variable. An array is also implicitly released if a
STORE TO or assignment command (=) is issued on the same
name without a subscript. As an example:

DECLARE varl[20]
varl[l] = 5
varl[2] = "ABC"
varl = 1

In this example, varl is defined as a 20 element array and two of its
elements are defmed. However, when the "varl = 1" command is
executed, the array varl is released and a scalar memory variable
is created in its place. Note: This only happens when the array is
defmed in the current domain. If an array has been hidden using a
PRIVATE command, then using the array name as a normal
memory variable at the current level will not release the hidden
array or its elements.

When an array is declared, two bytes of MEMV AR space are
immediately used f qr each potential element in the array. An
additional three bytes are used for a fixed header. Each element
takes the same space it would as a normal memory variable and only
when it is defined. Thus DECLARE array{l0) takes 23 bytes plus
the size of each element as it is defined.

2-9

Chapter 2: Overview

Operators and Precedence

Mathematical
operators

Relational
operators

Logical
operators

TDBS is 100% compatible with dBASE III Plus for all expression
operators and their precedence. All operators and data type
operations are 100% supported. Operators fall into three
categories as follows:

Perform basic arithmetic on numeric values. Additionally the
+ and - operators may be used to concatenate character strings.

Compare two values and return a logical value of .T. or .F. depend
ing on the outcome of the comparison.

Produce a .T. or .F. result after comparing two or more expressions
that use mathematical or relational operators. Extended in TDBS
1.2 to also allow 32 bit operations on numeric values.

Mathematical operators:
+ Adds two numbers, or adds a number and a date giving a date, or

concatenates two character strings.

*

I

"'or**

()

2-10

Subtracts two numbers, subtracts two dates giving a number, or
concatenates two character strings.

Multiplies two numbers.

Divides two numbers.

Exponentiation of one number by another (requires math co
processor or 486 with internal math processor).

Parenthesis are used for grouping and overriding the standard
order of operator precedence.

When TDBS evaluates expressions, it follows the standard order of
precedence (as opposed to a strict left-to-right order). The order
of precedence for math~matical operators is:

1. Unary + and - signs
2. Exponentiation
3. Multiplication and Division
4. Addition and Subtraction

Chapter 2: Overview

Relational Operators
< Less than. For Example: 1 < 10 is true (.T.), "A"< "B" is true, and

12131/88 < 01/25/89 is true.

> Greater than.

<>or#

<=

>=

$

. AND .

. OR.

. NOT.

Numeric
Boolean

Math

Equal.

Not Equal.

Less than or Equal to.

Greater than or Equal to.

Is first string embedded in the second string. Example:
"dog" $ "Hot dog and a beer" is true.
Note: Case is significant in this comparison.

There is no order of precedence in relational operators. All rela
tional operations are performed left to right.

Logical Operators
Returns .T. if both arguments are true, otherwise .F .

Returns .T. if either argument is true, otherwise .F .

Inverts the value of the following argument.

For numeric arguments the numbers are internally converted to 32
bit integers, a logical bitwise AND, OR, or NOT is performed, and
the 32 bit result is returned as a number.

The order of precedence for logical operators is:

1 .. NOT.
2 .. AND.
3 .. 0R.

When operators of different types are mixed, the order of
precedence is: Mathematical, then Relational, then Logical.
Parenthesis may always be used to override the standard order of
precedence.

2-11

Chapter 2: Overview

Program Structure and Control

2-12

TDBS is a block structured programming language. This means
that it does not have labels and branching within modules. It
provides instead all of the block structured capabilities needed to
do full programming flow control. Each function is written in
modular form, and the modules are called as needed to perform
the functions. TDBS is 100% compatible with all standard lan
guage control structures.

The three program control structures available in TDBS are:

IF < condition>

(El.SE
...]

ENDIF

DO WHILE <condition>

ENDDO

DO CASE
CASE <condition>

CASE <condition>

(OTHERWISE
...]

ENDCASE

Since the < condition> qualifiers may be complex expressions,
these control structures allow you to generate any program flow
which is required. In addition, the DO WHILE structure has two
"non structured" branching commands which can be quite useful.
These are EXIT which branches to the next instruction after the
ENDDO and LOOP which branches back to the DO WHILE
command.

Chapter 2: Overview

Subroutine Calling

TDBS also provides a complete subroutine calling and return
structure with optional parameter passing. In the dBASE language
subroutines come in two "flavors", sub programs and procedures.
In TDBS there is no difference between these two types of sub
routines. They exist as different entities in dBASE III Plus for
performance and memory reasons which are not present in a
compiled language. The TDBS compiler recognizes subroutines in
both forms and properly compiles them, however there is no execu
tion difference between them in TDBS.

Subroutines are called using the command:

DO subroutine (WITH < parameter list> J

Program control passes to the program (or procedure) named
subroutine and the return address is remembered. The subroutine
exits back to the calling program with the command:

RETURN

The subroutine is named either by having its source placed in a
separate .PRG file, or by having the command:

PROCEDURE subroutine

as its first line. TDBS allows inline procedures in any source file.
That is you may end one program and begin another simply by
placing a new PROCEDURE command in the source file. The
TDBS compiler will recognize this and compile the procedures as
separate subroutines.

To pass parameters to a subroutine the calling command uses the
optional WITH < paramlist > capability, and the receiving sub
routine must have as the first active statement in it the command:

PARAMETERS < paramlist >

and < paramlist > must have the same number of arguments on
both the PARAMETERS and the WITH command.

2-13

Chapter 2: Overview

Screen and Keyboard 1/0

2-14

The dBASE language provides extensive screen and keyboard
formatted 1/0 commands. TDBS implements 100% of these com
mands. However, some of them require that the user be configured
for ANSI and be on a terminal which is either ANSI or VT-100
compatible to operate. Other commands may be used on either
ANSI or non-ANSI terminals as follows:

1/0 Commands requiring ANSI terminals
@x,y
@x,ySAY
@x,yGET
@x,yCLEAR
@x,yTOx,y

READ

1/0 commands not requiring ANSI terminals
ACCEPT

INPUT

? <explist>

?? < exp list>

WAIT

CLEAR

TEXT ... ENDTEXT

There are also several functions for fme control of keyboard input.
None of these functions require ANSI or VT-100 compatible ter
minals.

TD BS requires that a terminal (or terminal emulator) be ANSI or
VT-100 compatible to use the full screen formatted display and
input commands. The terminal should support all of the terminal

Chapter 2: Overview

control functions listed on pages 2-23 and 2-24 of your TBBS
manual. If you use the SET COLOR TO command to implement
color then the terminal must support all of the functions listed on
page 2-24 of the TBBS manual under the Set Graphics Rendition
ANSI sequence. If you do not use SET COLOR TO, then only
normal and reverse video, and high and low intensity need to be
supported.

If a screen command is executed which requires ANSI terminal
codes, and the user is not configured for ANSI support in his TBBS
profile, then an error message will result. In order to avoid this, the
program may use the TDBS function UANSI() to test the user's
profile to see if ANSI support is turned on. Alternate screen
routines may also be written keyed by the user's profile setting.

Keyboard input may be either the normal VT-100 or ANSI mapping
(shown in the next section) or IBM PC scan-code mapping. TDBS
1.2 supports IBM PC scan code mapping (also sometimes called
"doorway mode") transparently so no special programming is re
quired for either mode. IBM PC scan code keyboard mapping
sends a single null character followed by the IBM PC scan code of
the function key pressed. With scan code keyboard mapping all
function keys work as they do from the local console keyboard.

2-15

Chapter 2: Overview

2-16

Keyboard mapping
TDBS supports all of the normal single character dBASE language
input control function characters. In addition, to allow ANSI,
Vf-52 and vr -100 terminal keyboards to use extended keys direct
ly, the following escape key sequences are mapped to control keys:

Key(s) Maps to Function Performed

<esc>[A "'E Cursor Up
<esc>[B "'X Cursor Down
<esc>[C "'D Cursor Left
<esc>[D "'S Cursor Right
<esc>[H "'A Word Left
<esc>[K "'F Word Right
"'O "'S Cursor Right
<esc> OP or <esc> P

Fl Function Key 1
<esc> 0 Q or <esc> Q

F2 Function Key 2
<esc> OR or <esc> Owor <esc> ?w

F3 Function Key 3
<esc> OS or <esc> Oxor <esc> ?x

F4 Function Key 4
<esc> Otor <esc> ?t

F5
< esc > 0 u or < esc ? u

F6
<esc> 0 q or <esc>? q

F7
<esc> 0 r or <esc>? R

F8
<esc> 0 p or <esc>? p

F9
<esc> 0 Mor <esc>? M

Function Key 5

Function Key 6

Function Key 7

Function Key 8

Function Key 9

FlO Function Key 10
Note: "'0 key mapping is because TBBS always intercepts "'S
as flow control. Thus "'0 must be used to input the "'S TDBS
function key from the keyboard as it cannot be entered directly.

Internally these key sequences appear identical to the standard
single key functions and the program isn't aware of them. They
allow programming terminal emulators to use their arrow and
function keys as marked.

Chapter 2: Overview

Memory Usage

Memvar
Memory

Field
and

Record
Memory

Global
Glossary
Memory

TDBS is constrained to a maximum of 48k per user of data memory
for all variables, buffers, tables etc. This is a limit which is placed
on all TBBS option modules. Because of this, the following dif
ferences between TDBS and dBASE III Plus arise with regard to
memory usage:

The TDBS MEMV AR area is 6k. This is the same size as the default
dBASE MEMV AR area, however it cannot be enlarged in TDBS.
This memory only contains the data for all current memory vari
ables, not the text of their names. None of this memory is used by
fields. dBASE III Plus is limited to a maximum of 256 active
variables, TD BS does not have this limit. As many variables as will
fit in the 6k of Memvar memory may be used.

TD BS has a total of 12k (called the work pool) to hold all field data
and buffer records. TDBS will attempt to swap record buffers and
reuse this memory as long as possible, but if you open all ten work
areas to very large files, and access many fields from these records
in a single operation you can run out of memory in TDBS where
you would not in dBASE. While it is rare that you will actually run
out of memory, it is a performance consideration, since you can
write programs which will cause TDBS to "thrash" in its use of file
buffer memory if they are poorly structured. TDBS has the same
4k per record and 128 fields per record limit as dBASE III does.

TDBS keeps all symbols in a table called the Global Glossary. The
amount of memory this table requires is larger if you use longer
variable names (up to 10 characters). It also is larger if you use
many different variable names rather than declare variables private
and reuse them. The Global Glossary has two portions, the static
and the run-time glossary. The static glossary is produces by the
compiler and contains all symbol names used in the program. The
run-time glossary is allocated by the /GLOSS switch on the com
piler and reserves memory for symbol names added by the USE
and RESTORE commands (or macros which create new symbol
names). The run-time glossary memory may also be used for
dynamic index buffering if the /DIBUF compiler switch was used.
Dynamic index buffering can return dramatic performance im
provements if the program can tolerate a large run-time glossary
allocation.

2-17

Chapter 2: Overview

Get Each GET command requires an entry in the Get Pool. In dBASE
Pool there is a separate pool for PICTURE information and GET

Memory entries (called the BUCKET and maximum number of GETS
respectively). By default in dBASE you may have 2k of BUCKET
space and 128 GET commands pending. In TDBS, all of this
information is put into a single pool, which is set by the /GETPOOL
compiler switch. There is no maximum limit on the number of
GETS pending in TDBS, the entire limit is the sire of the Get Pool
area.

Program
Memory

TDBS programs are executed in a buffered manner from disk.
Thus there is absolutely no limit on the total sire of a TD BS program
beyond the amount of disk space available. TDBS caches the
program code from disk so that performance remains good even
with very large program files.

Understanding Work Pool Allocation

Because it must operate in a very small amount of memory, TDBS
has a dynamic memory area that it "slices up" as a program runs to
provide many different buffer and memory segments. If you under
stand how each portion of this memory interacts, you have a lot of
control within your program and can often make programs fit that
won't otherwise. The total sire of this dynamic memory area is
about 14k and it includes the following memory structures:

WAD Work Area Descriptor: Each open work area has a Work Area
Descriptor which is a minimum of 80 bytes in sire. Each open index
file adds to this sire and a maximum of nearly lk is possible if several
complex indexes are used. The WAD must be resident in the work
pool as long as a work area is open, it may not be swapped out.

FIRPOOL Field Intermediate Results Pool: This area contains the values of
any field in any open .DBF file which has been accessed by the
program in internal form (i.e. converted from ASCII as it is stored
in the file to 9 bytes for numeric, etc.). TDBS can purge this pool
between instructions to swap use of this space with other functions.

WARBPOOL Work Area Buffer Pool: This memory contains the buffers that hold
the current DBF records for the active work area(s). If space is
available the current record is cached for each active work area.
The W ARBPOOL must always be large enough to hold to largest

2-18

FIOBPOOL

ONDSV

INSTPOOL

FKPOOL

Chapter 2: Overview

DBF record from all work areas. This area can be swapped with
some other uses of the work pool memory.

Flat file 1/0 Buffer Pool: This memory area is defined by the
program when the FOPEN or FCREA TE commands are used.
This memory is removed from any other work pool use until the
FCLOSE command is issued.

ON DISCONNECT Save Area: This area contains a "shadow
stack" whenever an ON DISCONNECT command is active. It is a
fixed size of 400 bytes and is removed from any other work pool use
until the ON DISCONNECT is cancelled.

Instruction Pool: This memory contains any "canned" instructions
(in compiled form) that are used when SET RELATION or SET
FILTER commands are active. This memory is removed from
other work pool use until each SET command is cancelled.

Function Key Pool: This memory contains any text currently as
signed to function keys via the SET FUNCTION command. The
memory is removed from other work pool use until the SET FUNC
TION command is cancelled.

You can control the size of the total memory available for the work
pool to some degree. The work pool is the memory "left over" after
the Global Glossary (both static and run-time) and the Get Pool
have been allocated. You can use the compiler switches /GLOSS
and /GETPOOL to control the size of those memory areas. If you
minimize the Get Pool and the Global Glossary memory, you will
return more memory to the work pool.

Obtaining optimum performance from a TDBS program is a
process of trial and error. If you understand the memory allocation
methods used, it can help you to "tune" your usage more rapidly. In
addition, understanding how TDBS uses memory can help you
know what action to take when your program gets a "Not enough
room for ... " error.

2-19

Chapter 2: Overview

TDBS Maximum Limits

2-20

There are several other areas where maximum limits exist. These
limits vary greatly in other xBASE dialects, and are often hard to
determine. The following are their values in TDBS:

Maximum number of nested functions ... 20

Maximum function calls in one instruction line 100

Maximum expressions in a single instruction line 100

Maximum DO procedure nesting depth 100 levels

Maximum depth of IF nesting .. 255 levels

Maximum depth of DO WHILE nesting 255 levels

Maximum depth of DO CASE nesting 255 levels

Maximum number of CASES per DO CASE Unlimited

Maximum total number of ELSE, ENDIF, CASE,
ENDCASE, and ENDDOs per program 3,000

Maximum parameters passed by a DO WITH 100

Maximum number of procedures per program 200

Maximum records per file .. 1 billion

Maximum bytes per file .. 2 billion

Maximum fields per record .. 128

Maximum bytes per record ... 4,000

Maximum length of Field or Memvar names 10 characters

Maximum length of procedure names 8 characters

Chapter 2: Overview

Command Differences in TDBS

Command differences in TDBS are of two types. First, there are
some dBASE III Plus commands which are not supported by
TDBS. Secondly, there are some extended commands and com
mand options which TDBS adds to the xBASE language.

Commands not supported
The following standard dBASE III Plus language commands are
not supported in TDBS version 1.2.

ASSIST and
HELP Interactive help facility

SUSPEND and
RESUME Interpreter control commands

APPEND, CREATE, INSERT, BROWSE, EDIT, CHANGE,
MODIFY, DISPLAY, and LIST full screen commands

EXPORT and
IMPORT Data transfer to PFS files

RUN or!
CALLand
LOAD DOS Shell and Assembly language programs

LABEL and
REPORT Pre-formatted print commands

REINDEXand
PACK file maintenance commands

Sort a file

Merge two databases into a third

SORTTO

JOIN

TOTALTO Create DBF file with totals of specified fields

UPDATE ON Change one database based on another

2-21

Chapter 2: Overview

2-22

Unimplemented commands (cont.)
SET commands which apply to the interactive environment
which doesn't exist in TDBS:

SET CARRY
CATALOG
DEBUG
HELP
DO HISTORY
HISTORY
STEP
ECHO
TITLE
MENU
MESSAGE
ODOMETER

Set commands which apply to screen features which are only
available in TDBS is one form. These commands may be
entered with the specified setting only for compatibility. If they
are not present in a program, then the given default settings
apply. Attempts to set them differently will give an error message:

SETTALKOFF
SET SAFETY OFF
SET STATUS OFF
SET HEADING OFF
SET SCOREBOARD OFF

Set commands which apply to features not implemented in
TDBS version 1.2.

SET ENCRYPTION
SETVIEW

Chapter 2: Overview

Command Extensions
The following commands have extensions in TDBS which add to
the dBASE III Plus functionality:

USE Has MAILBOX option added. This option is used to give an
efficient method of communicating in real-time between programs
being run by different users. Also hasREADONLYadded to allow
access to restricted files.

HALT This extended command allows exiting a program with a program
generated error message and pauses before returning to the calling
menu.

SET FORMAT TO

SET DISPLAY
RULES

The NOCLEAR option has been added to this command to allow
you to make a .FMT file operate the same as in Clipper. By default
TDBS treats .FMT operation compatibly with dBASE and clears
the screen before each embedded READ command. Additionally,
TDBS has enhanced .FMT operation to allow any commands to be
used instead of only @ and READ commands as in dBASE.

Allows adjusting certain screen display boundary conditions to
operate as they do in various dBASE dialects where they behave
differently. Default is dBASE III + with bugs removed.

SET DIVIDE BY Allows the program to choose the response to a divide by zero
ZERO TO condition. Default is to return the largest possible number as

dBASE III+ does. Optionally an error may be given.

SET UPDATE
BELL

When using the extended TDBS "Transparent file locking" feature,
it is possible for multiple users to be doing safe real-time screen
updates of the same record at the same time. TDBS will immedi
ately propagate any fields which are changed by another user to
your display. This command allows you to select the alert bell
function you want in this case independently from the normal SET
BELL command. You may select no alert, alert only if a field you
have edited but not committed was rolled back, or alert if any field
on the screen was changed, even if you haven't edited it.

SET SOFTSEEK Allows "relative" seeking. If a specified record is not found, the
record pointer is positioned at the record with the next highest key.

2-23

Chapter 2: Overview

DECLARE,
PRIVATE,
PUBLIC

DOTBBS

These commands have been extended to allow the definition of one
dimensional arrays. All other commands have been extended to
handle arrays as describe in "arrays" in this chapter

This command has been added to allow a TDBS program to "shell"
to a TBBS internal command. Note: TDBS requires TBBS 2.2 or
newer to support this command.

SET EDITOR TO This command allows tailoring the operation of the TDBS memo
editor. It allows read only access, or the ability to allow or disallow
access to text files outside of the TDBS program itself.

@ .. . SAY/GET Keywords have been added to thee commands to allow fine control
over the memo editor as well as passive monitoring of shared record
fields.

READ The NOEDIT keyword has been added to the READ command to
make any memo editor accesses read only for this READ.

ON DISCONNECT Allows a "cleanup" procedure to be executed if an accidental
disconnect occurs while a TDBS program is running.

SET DISCONNECT Controls limits of TD BS during an ON DISCONNECT procedure.

ONNEWMAIL

2-24

FOPEN
FCREATE
FCLOSE

FLREAD
FLWRITE
FLFIND

FBREAD
FBWRITE

Allows reception of data via a MAILBOX to "interrupt" an execut
ing TDBS program.

Allow direct access to non-database files.

Allow line-by-line access to ASCII text files. Also allows rapid file
searches for key words or text fragments.

Allow direct access to binary files.

Chapter 2: Overview

Extended Functions

ALIAS(n)

ACOPY0

ADEL0

AFIELDS0

AFILL0

AINS0

ASCAN0

ASORT0

ADSORT0

FCOUNT0

SELECT0

DTOS(d)

EMPTY(exp)

PROCLINE0

PROCNAME0

SECONDS0

FLOOR(n)

CEILING(n)

ISLASTDAY(d)

TDBS has added several extended functions as follows:

Return a character string with the Alias name for work area "n".

Copy array elements.

Delete array elements

Move database definition info into arrays

Fill an array with a value

Insert an element into an array

Find a matching array element

Do an ascending sort of array elements

Do a descending sort of array elements

Count the number of fields in a work area.

Return number of currently selected work area.

Return string with date "d" in yyyymmdd format.

Return logical .T. if "exp" expression is empty.

Return number of current procedure line.

Return string with current procedure name.

Return time as number of decimal seconds and hundredths of
seconds since midnight.

Return integer number equal to or next lower than n.

Return integer number equal to or next higher than n

Return .T. if this is last day in month, else .F.

2-25

Chapter 2: Overview

TDBS Extended Functions (cont.)
ISLEAP(d) Return .T. if date is in a leap year, else .F.

LASTDAY(d) Returndatevalue = lastdayofmonthof"d".

HEX2DEC(c) Convert string "c" (treated as hex digits) to a number.

DEC2HEX(n) Convert number "n" to hex digits, return as string.

CAPFIRST(c) Convert only first character to capital letter.

WUST(c) Left Justify string "c".

RJUST(c) Right Justify string "c".

RAT 0 Find rightmost occurrence of a string within another string.

ISINT(n) Return .T. if"n" is integer, else .F.

ISSTATE(c) If"c" is two characters in length and a valid post office US State
abbreviation return .T.

ST ATENAME(c) Convert two character state abbreviation "c" to a string with the full
state name. Return a null string if "c" is not a state abbreviation.

LASTKEY0 Returns the "n" value of the last key processed as input by TDBS.

NEXTKEY0 Returns the "n" value of the next key typed ahead, but does not
remove it from the buffer. If no key typed ahead, returns 0.

INDEXKEY0 Find the key expression for a given index file.

INDEXORD0 Find the current index file list order.

HOMEPATH0 Return string with the home path (from Opt Data on menu entry).

NMYUSERS0 Return "n" indicating the number of current users running this
TDBS program.

NUSERS0 Return "n" indicating the number of current users running any
TDBS program.

USING0 Determine which users are sharing a database or mailbox.

2-26

ISSHAREQ

UNAMEQ

ULOCATION0

UNOTES0

UPRIVQ

UAUTH(n)

UANSIQ

UIBM0

UMORE0

UWIDTH0

ULREPLACE0

ULPEEK0

ULPOKE0

ULINE0

NEWMAIL0

Chapter 2: Overview

TDBS Extended Functions (cont.)
Determine if any user is sharing a file or mailbox.

Return string with user name or id.

Return string with user's location field.

Return string with userlog NOTES field.

Return numeric value of user PRIV 0-255.

Return string of form ".XX." corresponding to the users A(n)
flags. If INT(n) is not 1, 2, 3, or 4 then return a null string.

Return .T. if user has ANSI set on, else .F.

Return .T. if user has IBM Graphics set on, else .F.

Return "n" with the value of the user's -more- setting.

Return "n" with the number of characters per line the caller is
configured for.

Update selected userlog record fields.

Read any userlog record field.

Update any userlog record field.

Return single character string with line indicator (0 - W).

Return .T. if a mailbox has new mail waiting.

TDBS Extended Functions (cont.)
GETLPT(n) Return .T. ifLPTn can be assigned to this program for use.

WAIT4RLOCK(n) Allows a programmed wait for record locking.

WAIT4FLOCK(n) Allows a programmed wait for file locking.

WAIT4LPT(n) Allows a programmed wait for a printer resource.

2-27

Chapter 2: Overview

WAIT4MAIL(n) Allows a programmed wait for a received mail

INKEY(n)

FINDFIAST(c)
FINDNEXT(c)

FDATE(c)
FTIME(c)
FSIZE(c)

SOUNDEX(c)

FERROA(h)
FMAXLEN0
FLEN(h)
FBEXTRACT(h)
FBINSEAT(h)
CRTAIM(c)

2-28

This function has been extended to allow a programmed wait for
keyboard input.

Allows searching for files which match a DOS wildcard specifica
tion when the names are not known in advance.

Allow determination of file attributes.

Produces a "sounds like" code for a text keyword.

These functions allow manipulation of data and detection of error
conditions associated with direct file 1/0 commands and buffers.

Extended File Sharing Support
In addition, TDBS offers several transparent multiuser file sharing
features which are not normally available. These allow a program
to share files much more easily than is usual with dBASE language
dialects.

TDBS will even automatically update all user's screens when a
shared database file field which is part of a READ is updated by
another user! This means that in many applications records never
need to be restricted from use by all users for even a small amount
of time.

See Chapter 3 for a full discussion of both the dBASE standard,
and TDBS extended multiuser features.

Chapter 2: Overview

DOS File Limits and FCB Sharing

Since all users of TDBS share the same TBBS and DOS resource
poo~ the absolute limit on different files open at the same time by
all TDBS users is 128 files. This is because TBBS is limited to 150
simultaneous files open, and reserves 22 DOS FILES= entries to
assure it can meet its internal needs at all times. Note: The TDBS
limit is smaller than 128 unique files open if the DOS CONFIG.SYS
has a FILES= value smaller than FILES= 150.

In order to make this limited resource stretch as far as possible,
TDBS will share the same FILES= entry (FCB) for all TDBS users
which are currently using the same file. Thus if a single file is
opened by one TDBS program, or by 64 TDBS programs that file
will still require only a single FILES= entry from DOS to support
its operation. Note: Each program also takes one FILES= entry
to open the .TPG file which remains open for the duration of the
program execution. Here again, if more than one user is running
the same program, TDBS will share one FILES= entry to service
all users of that .TPG file.

TBBS is normally configured so that there are enough FILES=
entries for each user to have two of them in use at the same time
without running out. In configuring for TDBS, you need to increase
the FILES= setting in the DOS CONFIG.SYS file if you expect to
run TDBS programs which will result in more than two unique files
per user being open simultaneously.

For example, if you are only running a single TDBS program, and
that program can open a maximum of 15 files at the same time (the
dBASE III+ limit) then you would need to add 13FILES = entries
to the CONFIG.SYS setting. Why 13? Because if all users are
running the same program, they will be accessing the same data,
index, and .TPG files. TDBS will share the FILES= resource for
each file when multiple users have it open. Thus for a 32 user system
instead of TDBS requiring 480 FILES= entries (as would be
required without FCB sharing) only 15 entries are needed. So you
can see that FCB sharing makes the difference between an applica
tion which fits easily, and one which would not fit at all.

Note: IftheFILES = limit is exceeded, the TDBS program will give
the error message Too Many Files Open.

2-29

Chapter 2: Overview

Macro Compatibility

Text String
Macros

Literal
Macros

Expression
Macros

Empty Macros

2-30

Because dBASE III Plus is an interpreter, macros may be used for
any character string substitution in any portion of any command
line. Since TDBS is a compiled language there are some restric
tions on macro usage which are not present in dBASE. To sum
marize these differences, we must first understand that there are
really three different types of macros, based on where they occur
in an instruction line. TDBS does not allow a "mixed mode" macro
which crosses the boundary between types. The categories are:

This category includes any macro which is part of a text string which
is enclosed in quotes, but does not include the quotes themselves.

This category includes any macro which expands to exactly replace
one argument of a command line such as a file name or variable
name.

This category includes any macro which contains an expression
which must be evaluated at run time as part of the substitution.

TDBS 100% supports all macros of any of these types, but does not
support a macro of a combined type. This is commonly referred to
as "no commas in a macro" but that is not strictly true. Commas are
allowed in macros as argument separators in a function in an
expression macro for example. Commas are not allowed in a TDBS
macro however, if they indicate a separation between two of the
above macro types, even the same type.

TDBS also 100% supports combined macros, for example where
macros are used to build variable names in the following example:

&mac.VAR&sub

This would result in a single variable or field name and thus is a
legal macro construct in TDBS.

Unlike many other dBASE compilers, TDBS will handle empty
macros in a command as in the following example:

varl = ""
SET DELIMITED &varl && set/reset delims

Chapter 2: Overview

Memory Variable Domains

As a programmer you need to have a thorough understanding of
the way TDBS variables are handled. This process is 100% com
patible with the xBASE language standards. Memory variables
have three possible domains: public, private, and hidden. These
domains are defined at each program level, so let's first define what
a program level is.

Program Levels
Initial TDBS program execution begins with the first instruction of
the main program. The main program is the "top level" of the
program's execution. Any time a program calls a procedure (or
sub-program) by using the DO command, the called procedure is
one level "lower" than the calling program. If this procedure calls
another procedure before it returns, then that procedure is con
sidered one level lower. TDBS allows a program to "nest" proce
dure calls in this fashion up to 100 levels deep. When a lower level
procedure executes a RETURN command then the level of execu
tion returns to one higher until at last all procedures return and the
program is again at the top level in the main program. These levels
are important because they affect the way that memory variables
are created and accessed as the program is executed. Note: because
TDBS is a compiled language, there is no difference between
individual programs and procedures in a procedure file as there is
in dB ASE III + . TD BS is even extended to allow inline procedures
in any program file it compiles.

Private Memory Variables
By default all TD BS variables are private. This means that they are
only accessible to the procedure that created them and any proce
dures which are executed at a lower level. A RETURN command
erases all private variables that were created at the current program
level. The RELEASE command returns the memory of all private
variables at the current program level, but does not erase the
variable itself. This is a subtle but important difference which will
be explored after we define PUBLIC memory variables.

2-31

Chapter 2: Overview

2-32

Public Memory Variables
Public memory variables are available to procedures at all levels.
Public variables must be declared by using the PUBLIC command.
The placement of the PUBLIC command in the program is also
important. It must come before the variable is used in any way,
because if a variable is currently defined, it is by default PRIVATE
at the level it was defined. The PUBLIC command cannot override
a currently defined variable. Once a variable is declared PUBLIC,
the RELEASE command will not erase it. Only the CLEAR
MEMORY or CLEAR ALL command will erase the PUBLIC
variable definition. Public variables can be hidden, however, and
their names temporarily used as a private variable as is described
next.

Hidden Variables
Hidden memory variables are those that have the same names as
variables in lower level procedures, but are temporarily set aside or
hidden while the lower level procedures are running. To hide a
variable which was created by a higher level procedure, a lower
level procedure must use the PRIVATE command. When the
PRIVATE command is issued on a variable name, the higher level
value of the variable is hidden. All references to this variable will
now access a new local version of this variable until the procedure
level at which the PRIVATE command was issued executes a
RETURN. When this RETURN occurs, the PRIVATE version of
the variable is erased from memory and the original value of the
variable comes out of hiding and is again accessible.

A variable can be hidden repeatedly at different levels, and as the
nested procedures return past each PRIVATE command for the
variable the previous version of the variable value will return. This
operation may be considered a stacking operation as variables are
hidden at various levels. The purpose of all of this is to allow you
to create general purpose procedures which can use local variables
and not worry about affecting variables which may have the same
names in programs which call them.

Chapter 2: Overview

Parameter Passing

By use of the DO WITH and the PARAMETERS commands you
can pass variables from a calling procedure to a sub-procedure.
Variables in TDBS may be passed in two ways. These two ways are
known as Call by value and Call by reference. This is 100% com
patible with the dBASE language standard.

Normally a parameter is passed to the subprogram using the Call
by value method. In this case, a private variable with the receiving
PARAMETER name is created and the value of the calling expres
sion from the DO WITH line is copied into the variable. The new
variable has the original calling value, but if it is changed by the
called procedure the original variable is unaffected. Thus the
parameter passing is a one way operation. The value is passed
down to the called procedure and is erased when that procedure
returns and any original variables in the calling expression are
unchanged.

There are two ways to allow a called program to return a parameter
value. One is to declare a variable PUBLIC, and put the return
value in this variable. In this case, the return variable is not refer
enced in the DO WITH or PARAMETERS list, so the Call by value
problem is worked around.

However there is a special case where the PARAMETER and DO
WITH commands can be used to do Call by reference passing of a
specified variable, which will allow a lower level procedure to have
direct access to the higher level program's variable. In this case a
value may be returned in either a private or public variable.

This special case occurs when the DO WITH and PARAMETERS
line both specify a simple variable name (or array name) as a
parameter. In this case TDBS does not create a private receiving
variable for the parameter, but instead makes all references to the
passed variable point to the calling program's variable instead.
Thus the value is passed to the calling program by reference to the
calling variable directly, and any modifications the called program
makes go directly into the calling program's variable and are
returned to the calling program in that variable which is not erased
by the RETURN.

2-33

Chapter 2: Overview

Memo field support

TDBS provides 100% compatible dBASE III Plus memo field
support. Memo fields allow text of any size to be carried as a logical
field in a database. This type of field cannot be used in expressions,
but can be displayed or edited under program control. Note:
dBASE IV users must convert memo files (.DBT) to dBASE III
Plus format for use with TDBS.

A memo field can be displayed using the ? or ?? commands. It will
be displayed as word wrapped text, and the width used will be either
the user's TBBS terminal profile width, or a width set by the SET
MEMOWIDTH command. These two commands can also be
routed to the printer or an alternate file to send memo field text
there as well.

When memo fields are displayed using @ ••• SAY or @ ... GET,
the word "memo" will indicate the presence of a memo field. Memo
fields can be viewed and edited by using a special form of the
command @ ••• GET coupled with the READ command. What is
special is that this command must be placed in a FORMAT file and
invoked through the use of the SET FORMAT TO command.

In this case, if the user presses "HOME or "] the memo field will
be opened. When a memo field is opened, the memo editor is
entered and the memo text may be viewed and optionally edited.

When a blank record is added to a database which has one or more
memo fields, those fields begin as empty. The memo editor must
be used to add text to each memo field.

The TDBS Memo Editor

2-34

The TDBS memo editor is compatible in operation with the dBASE
standard memo editor. It uses many of the Wordstar standard
editing commands as well and thus should be easy to learn. It
provides full screen editing since it is only available if the user's
terminal supports ANSI or VT-100 emulation. Memos up to 16
megabytes in size may be edited with this editor.

Example:

Chapter 2: Overview

In addition, TDBS extends its shared screen update with rollback
on collision (see Multiuser considerations in chapter 3) to the
memo editor. If more than one user are editing the same memo
field, when one commits changed text to the database, the other
user will immediately be editing the updated text.

The memo editor also allows importing text files into memo fields
and exporting memo fields to text files.

The SET EDITOR command allows you to tailor the memo editor
features to control what the user can do when in the editor. you
can make the editor read-only (the user can view but not modify
the text). You can also restrict or eliminate the ability of the user
to import or export text files. This allows you to enhance the overall
security of your system. You can also control the initial presence
or absence of the editor help menu when the user enters it.

In addition, through the use of keywords on the @ ... GET com
mand and the READ command you can temporarily override the
global editor settings to allow each editor entry to have only the
features you wish it to have, and you can also use the SELECT
keyword to directly enter the memo editor if you wish.

In general, memo fields should be restricted to 5k or less in order
to be compatible with dBASE III Plus itself. However, TDBS has
no limit below 32 megabytes on the size of a memo field. Entry to
the editor may take a few seconds if the memo field is very large.

To allow a user to enter a memo field, the@ ... GET command must
exist in a FORMAT file. Assume the file MEMO.PRG contains
the following lines:

@ 1,1 SAY "Press A] to edit the memo field"
@ 10,1 GET memo_field

Then the main program would contain:

SET FORMAT TO MEMO
READ
SET FORMAT TO

The trailing SET FORMAT TO clears out the FORMAT file mode
of the READ command returning READ to its normal operation.

2-35

I MULTIUSER

MULTIUSER

Introduction
Chapter 3: Multiuser

Programming in a multiuser environment usually requires con
sideration of the complex interactions which can occur when mul
tiple users share the same database. The standard dBASE
language provides the essential primitive functions to handle most
of these considerations, but using them properly can be quite
complex and take some experience to understand.

While TDBS offers a 100% compatible implementation of these
standard functions, it also provides expanded and much easier to
use multiuser capability. In fact, in most cases you do not need to
do any special coding to have TD BS properly arbitrate all multiuser
conflicts. Once you override the default setting which prohibits
sharing files, TDBS does the rest. To transparently share database
files simply place the following command in your main program:

SET EXCLUSIVE OFF

This command allows multiple programs to USE the same file at
the same time. TDBS will automatically and transparently arbitrate
and lock all access collisions.

The following pages will discuss the theory of multiuser arbitration
in general, and all of the multiuser features TD BS provides. You
should read and understand it, but you will find that multiuser file
access with TDBS is much easier to program and far more powerful
than it is in any other dBASE language dialect. Some features, such
as Screen Update Posting and Rollback on Collision which are
automatic in TDBS are simply not possible in other xBASE
dialects, or require immense programming efforts to provide.

The other multiuser problem which arises is when several copies of
the same program are running, and require unique file names. This
occurs, for example, if a SAVE and RESTORE are used to check
point memory variables and you want each program copy to have
its own file so that one copy of the program doesn't overwrite the
other's files. To do this, use the ULINE() function to append the
line number to the file name as follows:

SA VE TO "SA VE"+ ULINE()

3-1

Chapter 3: Multiuser

3-2

This method assures a unique file name for each copy of the
program so no files are overwritten.

Now we'll list the multiuser features which TDBS version 1.2
provides. After that we'll take a look at the problems which need
to be resolved in a multiuser environment and explain each TDBS
feature in detail. TDBS provides the following multiuser
capabilities.

• Transparent File Sharing- TDBS automatically arbitrates all
multiuser accesses with no special programming considerations.
We know of no other dBASE dialect which can provide
complete multiuser transparency as TDBS does.

• Transparent Screen Update and Rollback on Collision - A long
name which means that TDBS will automatically update the
screens of other users who are displaying a record which was just
updated. We know of no other dBASE dialect which offers this
capability transparently. Most cannot provide it in any form.

• Explicit File and Record Locking- Of course TDBS offers the
dBASE language standard capabilities in a 100% compatible
form. It also offers some extensions to these features which
greatly ease the coding task when using them, and also reduces
system overhead greatly.

• Automatic Record Locking - TDBS also allows a hybrid access
to a file where explicit record locking and transparent record
locking occur at the same time. In this case TDBS provides
automatic record locking where the two methods collide.

• Intraprogram Mailboxes -TDBS offers an efficient method of
passing messages from one program to another to allow
communication between programs or users online. Functions to
detect new mail easily are provided. Mail appears as a collection
of fields which are fully integrated into the TDBS language for
ease of access and manipulation, and which may contain any
combination of the standard data types.

• Multiple Printer Assignment and Arbitration - TDBS provides
the ability to have up to four printers connected. It allows a
program to bid for use of the printers and arbitrates access to
them between multiple programs.

Chapter 3: Multiuser

Multiuser Overview

Exclusive
File
Use

Record
Locking

One of the strongest portions of TD BS is the way in which it handles
multiuser access. This chapter will explore the extra concerns
which arise when databases are accessed by more than one user at
the same time. It will also discuss the concerns which must be
addressed when you run more than one copy of the same program
at the same time. The enhancements added to TDBS to allow
smooth handling of these concerns will also be explored.

Multiuser TDBS programs are faced with a potential problem that
does not occur in a single user environment because more than one
user may wish to use the same file at the same time. This potential
problem, called collision, will occur if more than one user attempts
to edit or add data to a database at the same time. If this collision
is not arbitrated properly, data integrity can easily be compromised.

There are two common ways in which this arbitration may take
place, and which one is used depends on what the program is trying
to accomplish. These methods are:

This method prevents more than one user from opening the file at
the same time. When the second user attempts to open the file
while the first user still has it opened, an error is returned indicating
the file is busy. This method is simple to use and understand. Once
the file is open, the program has no other considerations since it
cannot be shared and is in essence in a single user environment
again. The drawback to this method is that all other users who wish
access to this file must wait for it until the first user is finished.

This method allows a program to prevent other programs from
updating or accessing only a single record at a time. It is much less
likely that another program will want to actually share the same
record than the same file. Thus the likelihood that a program must
wait for access to a record in a shared file is reduced. However, a
wait will still occur if the record that a program wishes to change
or access is locked by another program. This method of preventing
collisions at the record level allows much better performance in a
shared file environment because waits for record access are much
less likely to happen than waits for file access.

The standard dB ASE language provides facilities for only these two
methods of collision arbitration. In addition, it requires that the

3-3

Chapter 3: Multiuser

Screen
Update
and
Rollback
on
Collision

program explicitly code all collision arbitration and wait loops
which can be a complex process. In some cases this level of detail
is required because of the user interaction required by the applica
tion. However, in most cases automatic arbitration methods will
suffice, and they are always much easier to use. TDBS features
sophisticated automatic collision arbitration options which are not
available in other dBASE language dialects. These are all varia
tions on record locking except for one, which uses a third arbitra
tion method.

This method assumes that any user can update the same record at
the same time as long as data file integrity is maintained. As a result,
one user may have a screen image of a record partially updated
(some fields changed but not committed to the file yet as editing of
the record is in progress) when another user writes an updated
version of the record being edited to the database file. In this case,
when a collision actually occurs, update rollback will undo the
edited fields which haven't been written (since there may now be
new data in them) and redisplay any fields which have values
different from those now on the screen. The user can then reapply
any desired updates after seeing if the changes make the updates
still desirable. This method assures that no waits or retries will
occur unless an actual collision takes place. It then allows the user
to decide if the collision changes what he was about to do. It is the
most efficient method possible when collisions are rare, as no waits
will ever occur for collisions which are only potential and don't
occur. In return it may require a user to occasionally re-enter an
update if a collision actually does take place.

TDBS Multiuser Features

Transparent
File
Sharing

3-4

Because TDBS operates on the TBBS multiuser platform, it can
provide capabilities efficiently which either cannot be provided in
other environments, or which introduce a large amount of system
overhead if they can be provided. TDBS provides features which
make multiuser access very efficient and smooth. These are:

Allows multiple programs to share the same file without having to
worry about multiple simultaneous updates. TDBS transparently
arbitrates all shared file updates and ensures that file and record
integrity are always maintained.

Transparent
Screen
Update Posting
and Rollback

Explicit
File and Record
Locking

Automatic
Record
Locking

Intra program
Mailboxes

Chapter 3: Multiuser

Allows multiple TDBS users to effectively do screen editing of the
same record in the same file at the same time. It posts any changes
to fields made by another user immediately to all other user's
screens. It can optionally alert a user if another user has committed
an update to a field that this user has edited but not yet committed.
As the name implies, this feature operates transparently, that is
without specific program intervention or coding required.

TDBS also 100% implements the standard dBASE language ex
plicit file and record locking functions and commands. These
commands allow files to be opened for exclusive or shared access,
and for records or files to be explicitly locked from updating by any
other user for extended periods under program control.

Finally TDBS allows a hybrid of transparent record locking and
explicit record or file locking. In this case one (or more) program
sharing a database file is using transparent file sharing while one
(or more) other program sharing the same file is using explicit
record or file locking. When the user who is using transparent file
sharing attempts to update a record which is explicitly locked, TD BS
will shift into automatic record locking mode to arbitrate the con
flict. A program must write an ON ERROR handler to handle
automatic lock retries and prevent this from causing a program
abort, but automatic record locking requires no other special
programming. This allows different programs to share the same
file at the same time with different sharing methods and still per
form all database updates correctly.

This TDBS feature allows a program to efficiently exchange mes
sages with either itself or another TDBS program via a mailbox.
Because mailboxes appear to the TDBS program to be single
record database files, up to 4,000 characters of information may be
passed in a mailbox. All of the TDBS commands operate directly
on mailbox data just as they do on fields. Mailboxes are an extreme
ly efficient method of communicating between programs in a mul
tiuser environment.

Let's now look at each of these features in detail and see how they
operate.

3-5

Chapter 3: Multiuser

Exclusive or Shared files

3-6

The first level of arbitration is file locking. A file is opened in
exclusive mode when the file is intended for a user's private and
exclusive use.

If a file is opened for Exclusive use:

• Only one user can access the file at a time.

• There is no need to lock or arbitrate any record accesses in the
file.

If a file is opened in Shared mode, then any number of users are
allowed to open and use it at the same time. If a file is shared:

• The file can be accessed by multiple users.

• The file and/or its records may require locking or other
arbitration for updating.

By default all files will be opened in exclusive mode in TDBS. To
allow file by file control of the sharing mode the command:

SET EXCLUSIVE OFF

should be issued. After this command, a normal USE command
will open a file in shared mode. You can still indicate that an
individual file is to be opened for exclusive use by adding the
EXCLUSIVE modifier to the USE command.

Note: Files already open are not affected by the SET EXCLUSIVE
command. This command only indicates the default access for
subsequent USE commands.

If a file is opened for exclusive access, and another user currently
has it open, an error will result. This error can be fielded by using
the ON ERROR option to write a retry subroutine.

Chapter 3: Multiuser

Explicit Record and File Locking

When a file is opened for shared access, the standard dBASE
language provides functions and commands for explicit file and
record locking. In order to facilitate retry loops and error checking,
the lock requests are implemented as functions, and the unlock
action is a command. These functions and commands are as fol
lows:

FLOCK{)
This function attempts to lock all records in the file open in the
current work area. If it is successful, it will return .T. and all records
in the file will be locked. If one or more records in the file are
already locked by another user, the lock cannot be done and the
function will return .F. to indicate failure.

RLOCK()
This function attempts to lock the current record in the file in the
current work area. If it is successful, it will return • T. and the record
will be locked. If this record is already locked by another user, the
lock cannot be done and the function will return .F. to indicate
failure.

UNLOCK
This command will remove any locks you now have on the current
file. You may add the ALL option to remove any locks you have
placed on files in any work area.

Notes: Only one RLOCK() or FLOCK() may be pending for a file.
If you issue another one for this file, the first lock is removed, even
if the new lock attempt fails. Closing the database file will remove
any locks you have placed on it, as will a program abort or termina
tion. Loss of carrier will also remove any locks pending.

In addition to these standard dBASE language locking functions,
TDBS offers two extended functions which make coding locking
loops easier. These two functions are:

3-7

Chapter 3: Multiuser

3-8

WAIT4RLOCK([n])
This function contains all of the delay and retry logic required to
implement a record lock request which does the following:

• Return .T. if the record lock can be done

• Retry a failed record lock attempt every 500ms until it succeeds
(in which case .T. is returned) or until one of the following
occurs: l)The user presses any key during the wait, 2) The
optional timeout value of "n" seconds elapses without a
successful record lock occurring, or 3) The function is attempted
when there is no open file in the current work area. If any of
these occur the function will return .F. to indicate failure.

This function thus allows in a single command a record locking wait
which would require many instructions and nested loops without it.
It also causes much less overhead to the TBBS system than a tight
loop issuing RLOCK() repeatedly. Here is an example record
locking handler using this function which will attempt to lock the
selected record repeatedly for up to 1 minute, or until the user
presses a key to abort the wait time.

* WAIT4RLOCK example

DO WHILE .T.

ACCEPT "Enter name to change" TO Mkey
IF UPPER (Mkey) = "END"

EXIT && Exit requested
ENDIF
SEEK MKEY
IF .NOT. EOF()

IF .NOT. WAIT4RLOCK(60)
WAIT "Record Locked, can't access"
LOOP

ELSE
@ 5,5 SAY "Enter new name" GET name
READ
UNLOCK

ENDIF
ENDIF

ENDDO

Chapter 3: Multiuser

WAIT4FLOCK([n])
This function performs identically to the W AIT4RLOCK function
described on the previous page, but it will loop attempting to do
the FLOCK() function instead of the RLOCK() function.

Fielding Locking Conflicts
If a file locking conflict occurs on a USE command, an error is
generated. To field such errors you must write an error handling
procedure. The commands which aid in this procedure are:

ONERROR
RETRY

The ON ERROR command specifies a procedure to be entered on
any error encountered. Locking errors will activate the ON
ERROR routine. If the routine wishes to, it may loop for some
period of time to retry the action which caused the locking error by
issuing the command RETRY.

Two functions which may be used in an error routine are:

ERROR()
MESSAGE()

The ERROR() function returns the error number which caused
entry to the ON ERROR routine. This error number may be used
to determine the proper action to take, and to discriminate locking
errors from other error conditions. If the error handler determines
the error number should result in operator intervention, it may use
the MESSAGE() function to obtain the text of the error message
for the error which occurred and display it.

Sample File Locking Handler
The following code illustrates a sample ON ERROR routine which
will retry the open of a locked file up to 10 times. It also dis
criminates against other errors and displays any associated error
message before ending the program.

3-9

Chapter 3: Multiuser

3-10

* Error Handler

PROCEDURE ONERROR

DO CASE
CASE ERROR () = 108 &&

A=INKEY(2) &&
IF Tries< 10 &&

Tries = Tries+l &&
RETRY &&

ELSE

Locking error?
2 second delay
Tries is PUBLIC
count a retry
RETRY action

? "File is locked - can't proceed"
WAIT
QUIT

ENDIF

CASE ERROR () =

(other explicit errors here)

OTHERWISE
? MESSAGE()
? "Program Aborting"
WAIT
QUIT

ENDCASE

Sample Record Locking Handler
The following is a sample program which illustrates handling
record locking conflicts. Notice that this program uses only stand
ard dBASE language commands, and takes many more instructions
and is not as complete as the sample handler which used the
WAIT4RLOCK() function shown earlier.

Chapter 3: Multiuser

* Record Locking Example

DO WHILE .T .

ACCEPT "Enter name to change" to Mkey
IF UPPER(Mkey) = "END"

EXIT && Exit request
ENDIF
SEEK Mkey
IF .NOT . EOF()

Try= 1
CLEAR TYPEAHEAD && clear kbd buffer
DO WHILE .NOT. LOCK() .AND. Try< 250

IF INKEY() <> 0
EXIT

ENDIF
Try= Try+l

ENDDO
IF .NOT. LOCK()

&& bail if key press

? "Record locked, press key= retry"
WAIT
LOOP

ENDIF
@5,5 SAY "Enter new name" GET name
READ
UNLOCK

ENDIF
ENDDO

Notice that this program attempts to lock the record 250 times
and then gives up. It is generally a good idea to have some
method of exiting a lock wait loop. In this example an INKEY
check allows the user to break out. A tight loop attempting to
lock a record or file which has no termination method is not a
good idea.

3-11

Chapter 3: Multiuser

Transparent File Sharing

3-12

As you can see, explicit file and record locking can require a
great deal of programming effort. It is rarely necessary to have
this level of control, and TDBS provides transparent file sharing
which requires no extra programming effort from single user
programming. Whenever more than one TDBS program is shar
ing a file, transparent file sharing is in effect.

Until a record is written, transparent file sharing does nothing
but allow all users sharing the file to read the records they re
quest. However whenever any user writes an updated record to
the shared file, transparent file sharing performs the following:

• Writes the record to the shared disk file

• Instantly updates the changed fields for any user who is currently
accessing the same record. This updating occurs before any
other user can run again, so that total data integrity is preserved
for all users.

This means that as long as multiple updates do not need to be
arbitrated, shared file updates simply operate as you would expect
them to. It is another case of TBBS(IT) BS doing a lot of internal
arbitration to make it look like sharing files is not a big deal!

Note: It is a common practice in dBASE language
programming when updating record fields from the
screen to move the fields to memory variables, present
an update screen which updates the memory variables,
and then re-write the variables to the file. If this method
is used, then transparent file sharing can allow multiple
users to update the same record without properly ar
bitrating the updates because TDBS doesn't know the
updates being made to memory variables are really
updates to record fields. If you use this technique, you
must use explicit record locking.

However, TDBS provides a feature to handle screen updates to a
shared file very well. This feature is Screen Update and Rollback
on Collision, and is also totally automatic and transparent.

Chapter 3: Multiuser

Screen Update and Rollback on Collision
This feature of TDBS is automatically invoked when the READ
command directly accesses the fields in a record of a shared file.
This technique is generally considered dangerous by dBASE
programmers, because in most dBASE dialects there is a high
possibility of file damage when the @ ... GET command directly
references a database file field. However no such risk exists in
TDBS, and this feature is available if you use that technique.

If two or more users have fields from the same record in a shared
file displayed as part of a READ command, nothing looks different
normally. As they edit fields, these changes are kept in each user's
local memory area until the read is either aborted (via an < ESC >
key press) or is committed to disk by another exit function key.
Thus the database file integrity is preserved, as no partial or un
committed update is ever present in the database file itself.

When one of the users commits a change to the file, any fields which
were changed are immediately updated on the screens of all other
users displaying those fields from the same record. This is true even
if these users are running different TDBS programs, and have
different subsets of the record's fields displayed.

At the time that the newly committed record's modified fields are
displayed on other user's terminals, any partial update each had
done is rolled back automatically. Any rolled back fields are also
redisplayed with the current database record values after the up
date. The user's cursor is positioned to the beginning of the field
it was on when the update from another user was committed to disk,
and he may re-enter any updates he wishes now that he knows the
new values of this record.

SET UPDATE BELL
The program may determine if an alert bell should be given when
a screen update and/or rollback occurs. The command syntax is:

SET UPDATE BELL TO [OFF] [ON] [ROLLBACK]

This alert bell is totally independent of the SET BELL command.
It refers only to the transparent screen update function described
above. If this alert is set OFF, then no alert is given when a screen
is changed due to an update from another user. If this alert is set

3-13

Chapter 3: Multiuser

3-14

ON, then an alert is always given when any field on the screen being
displayed is updated with a new value by another user. If this alert
is set to ROLLBACK, then an alert bell is given only when a change
by another user occurs to a field that has been edited by this user
during this READ operation. This means that one or more partial
ly edited fields have been rolled back and must be re-edited. This
is the default setting.

Hybrid Automatic Record Locking
If two or more programs are sharing a file, and one of them is using
explicit record locking while one or more of them is using
transparent file sharing, then TDBS enters a hybrid mode. In this
mode, it will do transparent file sharing for the programs which
expect it unless one of them attempts to update a record which is
explicitly locked. In this case, TDBS will automatically report a
record sharing violation error. Thus to handle this condition, the
program using transparent file sharing must code an ON ERROR
handler which fields this error and retries the update operation if
it is to successfully share a file with a program which does explicit
record locking.

Chapter 3: Multiuser

TDBS Mailboxes

TDBS provides an efficient method of passing information between
either different TDBS programs, or multiple copies of a single
TDBS program. This method is known as a mailbox. In order to
make this feature as easy to understand as possible, a TDBS
mailbox is implemented as a single record database file.

This allows you to structure the type and size of the information
passed in the mailbox as you wish, by defining the record in the file
appropriately. It also allows the language to access or modify
mailbox values in the same way it accesses or modifies fields.
Finally, mailbox values will be checkpointed in the specified file
when all programs quit using it (or on demand as will be explained
below) so that a mailbox may even be used to pass information
between program runs as though it were a normal database file with
only a single record.

Mailboxes are significantly more efficient than simply opening a
shared file and writing to it. This is because mailbox transfers are
almost always memory to memory and don't actually write anything
to disk. The only time a mailbox will write to disk is when it is closed,
when memory requirements force a checkpoint, or when the data
is explicitly checkpointed to disk by the program.

Establishing a Mailbox
A TD BS mailbox is established by opening a single record database
file with the USE command and specifying the MAILBOX
modifier. The syntax of a mailbox USE command is:

USE < .dbf file> (ALIAS <alias>] MAILBOX [JOURNAL]

An error will result if the specified database file does not contain
exactly one record. This file defines the structure of the mailbox,
and the contents of the single record become the initial values in
the fields of the mailbox.

The JOURNAL option forces a checkpoint of the mailbox every
time data is changed by any user of the mailbox. It has no real use
in current versions ofTDBS, but is operational.

3-15

Chapter 3: Multiuser

3-16

Forcing a Mailbox Checkpoint
Mailbox data is usually not checkpointed to disk during a program's
operation. If the program has mailbox information it wants to
assure is saved in case of a power failure or system lockup requiring
a computer reset, then it must be checkpointed to disk. This may
be done at any time the program wishes by executing the command:

GOTOl

This command is interpreted by a mailbox as a request to check
point the current mailbox buffer to the mailbox disk file record if
any data has been changed. This is not normally required, but is
provided for those special cases where such checkpointing is neces
sary to the program's recovery process.

Sending Mail
Mail is sent to all other users of a mailbox automatically when you
update any field in the mailbox record. If these fields are updated
by being part of a READ command, then the actual update occurs
when the screen changes are committed by ending the READ
command with other than an <ESC> key. The TDBS Screen
Update and Rollback on Collision feature is always active for mail
boxes and operates as described earlier for shared files. This
feature can be used to create Visual Mailboxes if you wish.

If a REPLACE command is used to change the mailbox fields, then
each individual REPLACE command comprises a mail event. Thus
if multiple REPLACE commands are used to do a single update,
another user could see that new mail has been received after each
REPLACE occurs and see a partially modified mailbox record. If
the entire mailbox update cannot fit on a single REPLACE com
mand, you should make one field in the mailbox be a semaphore
which indicates that the record is valid. The first REPLACE in the
series should set that field to .F. and the last REPLACE in the series
should set that field to .T. again to indicate the record is fully
changed. Thus anytime that new mail is received, this field may be
tested by the receiver to avoid using a partially modified record.
This entire problem may be avoided if all mailbox changes are
expressed on a single REPLACE command, as TDBS can properly
lock mailbox accesses in that case.

Chapter 3: Multiuser

Receiving Mail
Receipt of mail is automatic. Each reference to a field in a mailbox
will always obtain the most recent value placed there by any pro
gram currently sharing the mailbox. However, it is often a require
ment of a program to know if any new mail has been placed in the
mailbox without going to a lot of programming effort. To provide
this capability, TDBS provides two special functions as follows:

NEWMAIL([wa])
This function tests for any alterations in a mailbox since the last time
it was called. The optional numeric parameter "wa" specifies which
work area the mailbox to be checked is open in. If it is omitted,
then the current selected work area is assumed.

If there is new mail in the specified mailbox then .T. is returned,
and the new mail flag is reset.

If there has been no change to the specified mailbox since the last
NEWMAIL call, or if the specified area is not a mailbox, then .F.
is returned.

Note: Because the NEWMAIL function clears the new mail flag
when it is reported, the next function call will return .F. unless
another update to the mailbox has occurred.

WAIT4MAIL([n])
This function allows a program to do a prolonged wait for new mail
on the current selected work area. The optional parameter "n" is a
maximum number of seconds to wait for new mail, if it is absent,
the wait is unlimited. If the user presses a key during the wait
(whether or not a time limit was specified) then the wait is aborted.
This function will return .T. if the wait ended with new mail
received. It will return .F. if the user presses a key, the time limit
expires, or the current selected work area is not a mailbox. Note:
the typeahead buffer is flushed at the beginning of this function, so
only a keypress after it is issued will abort the wait.

3-17

Chapter 3: Multiuser

3-18

ON NEWMAIL
In some instances, a program wishes receipt of mail to be handled
automatically as it is received without having the program constant
ly ask if mail is present. For this purpose IDBS provides the
command:

ON NEWMAIL DO Procedure

When this command is used, the named procedure is entered
between TDBS instructions whenever new mail is received in any
open mailbox. That procedure can then process the received mail,
and issue a RETURN to continue with the interrupted program.

USING BOX field
Another problem which arises in using mailboxes is how the sender
can determine if a receiving program is still operating. To allow
this determination, MAILBOX files honor a special "magic" field
name USING_BOX. If a mailbox has a field with this name it is
treated as follows:

Any time any user opens or closes the mailbox file, TDBS sends
mail to all other users of the mailbox. Since mailbox files are always
closed no matter how a user exits, this will notify all remaining
programs of a change in the mailbox user status.

At the time of the open or close TDBS automatically updates the
USING_ BOX field to pass file sharing information as follows:

If USING_ BOX is a character field, the same information that the
USING() function returns is automatically posted to show which
users are sharing the mailbox. If the field length is shorter than 65
characters, information about the higher lines is discarded. If the
field is longer than 65 characters, it is padded with periods(.).

If USING_ BOX is a numeric field, it will contain the number of
users which are now sharing the mailbox file.

lfUSING_BOX is a logical field, it returns a .F. if this is the only
program using the mailbox and .T. if one or more others are
currently sharing the mailbox.

Chapter 3: Multiuser

The following is an example of a procedure which makes use of a
mailbox to allow users of a program to send messages to each other.
Note: Cmsg is a 78 character mailbox field.

* Two way communications via Mailbox*

@ 0,0 SAY "Type EXIT to leave ••• "
Drow= 1 && init display row
USE COMM MAILBOX && Open the mailbox COMM
DO WHILE .T.

IF .NOT. WAIT4MAIL()
* +----------------------------------+
* No New Mail, User pressed a key I
* +----------------------------------+

@ 23,0 && position & clear
ACCEPT TO Tline && Get input line
DO CASE

CASE UPPER(Tline) = "EXIT"
EXIT && get out of pgm

CASE LEN(Tline) > 0 && if input
REPLACE Cmsg WITH Tline &&snd msg

ENDCASE
ELSE

* +-----------------------------------+
* New Mail received, put on screen I
* +-----------------------------------+

@ DROW,0 SAY Cmsg && Display Rcvd Msg
Drow= Drow+l && bump row number
IF Drow> 21

Drow= 1
ENDIF

ENDIF
ENDDO
USE
RETURN

&& close the mailbox
&& done with comm pgm

Notes: This program does not defend against multiple programs
writing to the mailbox at exactly the same time and losing a message.
Interlocking may be done either by semaphores in the mailbox or
by use of the RWCK() function which will operate correctly on
mailboxes.

3-19

Chapter 3: Multiuser

Printer Support

3-20

TDBS version 1.2 provides the capability to use up to four printers
and arbitrate them among multiple programs. TDBS version 1.2
does not provide a printer spooler, so in order to use a printer, the
program must first request it. If no other program is currently using
that printer, then the printer is assigned to the program, and may
be used. There are two methods of requesting printer assignment.
These are:

SET PRINTER TO [LPT1][LPT2][LYO][LPT4]

If one of the four printers is specified, then it is requested. If it is
not in use, then it is assigned to this program and the next instruction
is executed. If it is not available an error is generated. This error
may be fielded with an ON ERROR routine and retries or other
recovery action may be taken.

SET PRINTER TO

If no printer is specified, as in this example, then any currently
assigned printer is released for use by any other program that may
want it. No error is generated if the program doesn't own any
printer at this time. Note: Any assigned printer is automatically
released if the program exits (either normally or abnormally), if
carrier is lost, or if the user is aborted.

WAIT4LPT(n[,s])
This function provides an alternate method to bid for a printer. The
printer being requested is given by "n" which must be the number
1, 2, 3, or 4. The optional parameter "s" gives a maximum number
of seconds during which the command will attempt to request the
printer. This function will return .T. if the specified printer is
assigned to the program. It will return .F. if 1) The printer re
quested does not exist, 2) The optional time limit was reached
without being able to acquire the printer, or 3) if the user pressed
a key during the wait period.

Chapter 3: Multiuser

Printer Control
Once a printer has been assigned, then the standard dBASE printer
routing commands may be used. These commands are:

SET PRINT [ON][OFF]
SET CONSOLE [ON][OFF)
SET DEVICE [PRINT)[SCREEN]

The SET PRINT ON command will route the output of all ? or ??
commands to the printer. Through the use of such functions as
TRANSFORM you may have fully formatted output to the printer.
You may use the SET CONSOLE OFF command to prevent the
printed output from being displayed on the user's console.

The SET DEVICE PRINT routes all @ •.. SAY output to the
printer, and SET DEVICE SCREEN routes it back to the console.
The SET DEVICE, SET PRINT, and SET CONSOLE commands
operate independently of each other.

SET ALTERNATE
TDBS also supports the alternate file routing of the ? and ??
command. While dBASE routes all output except @ ••• SAY to the
alternate file, TDBS only routes the? and?? output. An alternate
file is opened using the command:

SET ALTERNATE TO <file>

The default file extension if none is given is .txt. Once the file is
open, the command:

SET ALTERNATE [ON][OFF]

Controls the routing to the alternate file. An alternate file is closed
by either of the commands:

CLOSE ALTERNATE
SET ALTERNATE TO

3-21

Chapter 3: Multiuser

Flat File 1/0

3-22

TDBS 1.2 adds extensive flat file 1/0 capability to allow you to do
direct access to non-database files. Two modes exist - binary and
ASCII Line - to ease handling of each type of file. In addition, a
rapid text search command (FLFIND) allows searching text files
for keywords or text fragments quickly.

Caution! Flat File 1/0 does not arbitrate multi-user
access as does normal database file 1/01 If you open
a file for write access from more than one program or
user at a time you are on your own to avoid file damage I

While the flat file 1/0 commands allow direct access to all files on
your system, you may access TBBS control files (such as USER
L0G.BBS, MSGHDR.BBS, etc.) only in read mode. Any attempt
to open these files in a write mode will result in an error.

Flat File 1/0 Basics
You access non-database files using the F0PEN or FCREATE
commands. These commands establish the access modes, whether
new data is appended, and the size of the file buffer you will use.
Note that the file buffer is removed from the TDBS work pool, so
you may need to coordinate use of flat file 1/0 with closing work
areas in some cases (see Understanding TDBS Memory Usage in
Chapter 2).

When you open a file, TDBS will return a numeric "handle". This
number identifies the file you have open for all further flat file 1/0
commands. You may have up to five files open at once in the flat
file 1/0 mode.

The F0PEN, or FCREATE command also establishes the access
method - Binary or ASCII Line. Binary mode is direct raw access
to the file, while ASCII Line mode buffers reading a line at a time
into normal TDBS string variables.

Any buffers you assign for flat file 1/0 are released only by the
FCL0SE operation. Any error termination or the QUIT function

Chapter 3: Multiuser

will automatically issue an FCWSE on all open flat file 1/0 handles
for this program.

Since you are called upon to set a buffer size for all FOPEN or
FCREATE commands, a function named FMAXLEN() is
provided to allow your program to know the maximum open space
which you can use as a buffer.

When you do any flat file 1/0, you may encounter a DOS error. If
you do, the FERROR() function may be used to determine the
reason or type of error which happened.

Line Mode 1/0
In Line Mode the flat file 1/0 system treats a file as a series of
records (lines) separated by end-of-line character sequences. In
ASCII line mode an "end-of-line" is automatically determined by
TDBS. It may be either "CR,LF", "LF,CR", "CR" only, or "LF" only.
To allow you to determine the end-of-line sequence, these charac
ters are left on the end of the string in your TDBS variable. The
CRTRIM() function will remove them for you. Note: LF =
CHR(l0) and CR = CHR(13).

In other words, line mode looks at the file the same way you look
at it in an editor, one line at a time. The end of the file may be
signalled by either a DOS EOF mark or by the character CHR(26)
" Z in the file data stream.

To make file access of a line mode file faster, you may allocate an
internal buffer for TDBS to use. This buffer size is a tradeoff in
memory usage (the memory is removed from the TDBS work pool
for other uses) and speed of access. A 2048 byte buffer gives good
response and a 4096 byte buffer is about optimum. Buffers smaller
than 2048 bytes will slow down file access noticably.

The Line Mode access commands are FLREAD, FLWRITE, and
FLFIND. FLREAD will read the next ASCII line into a TDBS
memvar as a normal TDBS character string. FLWRITE will write
a TDBS character string to the file. FLFIND will rapidly search
the file from its current position to find the specified text fragment.

The FSEEK command may be used in line mode to either deter
mine the current file position, or to re-position the file as you wish.

3-23

Chapter 3: Multiuser

3-24

Binary Mode 1/0
Binary mode 1/0 is not buffered by TDBS. The buffer size you
specify is the record size TDBS will use for all DOS 1/0, and all 1/O
occurs directly between the file and the specified buffer. No as
sumptions are made about the file data, and only the DOS EOF
mark applies to indicate end of file.

If the file record is less than 254 bytes in length, you may do direct
1/0 into TDBS string variables and have no buffer at all. Records
greater than 254 bytes must use a buffer. The functions
FBEXTRACT(), FBFILL(), FBMOVE(), and FBINSERT()
allow manipulation of the data in the buffer to and from TDBS
strings.

The commands FBREAD and FBWRITE are used to read and
write records in a binary file. In TDBS 1.2, strings will correctly
carry CHR(0) as a character (previous versions truncated strings
at such a character) so that binary data may be placed in TDBS
strings without loss.

The command FSEEK is used either to determine the present
position within a binary file, or to move to a new position.

The function FERROR is used to determine the type of any error
which occurs during binary file 1/0.

I COMMANDS

COMMANDS

Chapter 4: TDBS Commands

Command Notation Conventions

This chapter will describe each TDBS command in detail. First it
will explain the notation used to describe the command syntax.
Then a summary listing of all TDBS commands will be given,
followed by each command described in detail.

KEYWORDS

All TDBS command names or keywords are shown in upper case.
These portions of the command should be coded exactly as shown.

The following symbols are used to describe command syntax ele
ments or their characteristics as follows:

Symbol

[]

I

<>

Description

Indicates an item is optional. The brackets are
not typed.

Indicates one or the other option is specified,
but not both.

Indicates repeating elements or intervening code.

Indicates an element type as described below.
Note the angle brackets are not typed.

In addition to these symbols, various portions of the command
syntax descriptions refer to "elements" which represent a type of
argument which is allowed at that point in the command. As you
read the descriptions of each command, you may refer to the
following section to determine the meaning of each element type,
and how it relates to TDBS expressions, Keywords, and other
constructs.

Chapter 4: TDBS Commands

4-2

Element Types used in syntax descriptions
The following element types are used to indicate items which ap
pear in the TDBS commands. Each item will be shown in the
command enclosed in angle brackets. When an actual instruc
tion is coded, an item like this is replaced with an actual item of
the described type.

Element

<alias>
<array>
<col>
< condition >
<exp>
<expC>
<expD>
<expL>
<expN>
<ext>
<field>
<file>
<list>
<memvar>
<parameter>
<path>
<procedure>
<prompt>
<row>
<scope>

<skeleton>
<text>
<variable>
<work area>

Meaning

File work area name
Array name
Numeric expression for screen column
Logical expression resulting in .T. or .F.
expression of any type
Character expression
Date expression
Logical expression
Numeric ~xpression
File extension
Database file field name
Name of a file, not including extension
Items separated by commas
Memory variable of any type
Variable or expression of any type
Path to specified directory
Procedure or program
Character expression
Numeric expression for screen row
keyword and expression which selects the
portion of a database file to process as follows:
RECORD n A single record
ALL All records
NEXTn Group of records starting

with the current record
REST All records from the current

record to the end of file
Wildcard selection pattern including ? and *
A string of characters
Memory variable or database Field name
Database file work area number

Chapter 4: TDBS Commands

Summary of TDBS Commands

? /?? < exp list>

Displays the results of one or more expressions separated by a
space.

@ <row>,<col>

Positions cursor and clears to end of line.

@ <row>,<col> CLEAR [TO <row>,<col>]

Clears a rectangular area of the screen.

@ <row>,<col> [SAY <exp> [PICTURE <expC>]]
[GET <variable> [PICTURE < expC >] [RANGE < expN >,
<expN>]]

Displays and/or inputs formatted data at specified row and column
positions on screen. the @ .•• SAY portion may also be optionally
routed to the printer.

@ <row>,<col> TO <row>,<col> [DOUBLE)

Draws a single or double line box on the screen.

ACCEPT [<prompt>) TO < memvar >

Reads character string from the keyboard into specified memory
variable.

APPEND BLANK

Adds a blank record to the end of the current database file.

APPEND FROM <file> [<scope>]
[FOR <condition>] [WHILE <condition>]
[TYPE] [DELIMITED [WITH BLANK/< char>]]

Adds records to the current database file from an ASCII text file
or another database file.

AVERAGE <exp list> [<scope>] TO <memvar list>
[FOR <condition>] [WHILE <condition>]

Averages a series of numeric expressions to memory variables for
a range of records in the current work area.

4-3

Chapter 4: TDBS Commands

4-4

CLEAR

Clears the screen, homes the cursor, and clears any pending GETs
from the GET buffer.

CLEAR GETS

Releases any pending GETs from the GET buffer.

CLEAR MEMORY

Releases all PUBLIC and PRIVATE memory variables.

CLEAR TYPEAHEAD

Deletes any unread characters in the keyboard input buffer.

CLOSE ALUALTERNATE/DATABASES/FORMAT/INDEX

Closes the specified type of file, or all files.

CONTINUE

Resumes the most recent WCATE search.

COPY TO <file> [<scope>] [FIELDS < field list>]
[FOR <condition>] [WHILE <condition>]
[TYPE] [DELIMITED [WITH <char>]]

Copies all or part of the current database file to a new file.

COPY FILE <file>.<ext> TO <file>.<ext>

Duplicates a file of any kind to the second file named.

COPY STRUCTURE [FIELDS < field list>] TO <file>

Creates an empty database file with field definitions from the
current database file.

COPY TO <file> STRUCTURE EXTENDED

Creates a database file with four fields: FIELD _NAME,
FIELD_ TYPE, FIELD_ LEN, and FIELD_ DEC. The records of
this new database file are the field definitions of the current
database file.

COUNT [<scope>] [FOR <condition>] [WHILE <condition>]
TO <memvar>

Tallies the number of records in the current work area for the
specified scope and condition.

Chapter 4: TDBS Commands

CREATE <file>

Creates an empty structure extended file.

CREATE <file1 > FROM <file2>

Creates a new database file from a structure extended file.

DECLARE <array> [< expN >)[...)

Creates one or more PRIVATE memory variable arrays.

DELETE [<scope> J [FOR <condition>) [WHILE < condition>]

Marks records in the current work area for deletion.

DIR [<path> J [<skeleton> J
Displays the names of files in the specified directory.

DO <procedure> [WITH < parameter list> J
Executes the specified procedure with an optional list of
parameters passed to the procedure.

DO CASE ... CASE ... [OTHERWISE ...) ENDCASE

Selects a path of program execution from a set of conditions and
branches on the first true evaluation.

DO WHILE <condition> ... [EXIT) ... [LOOP] ... ENDDO

Executes a looping structure while the condition is true (.T.).

DOTBBS TYPE <expN> OPTDATA <expC>

Execute an internal TBBS function as a subroutine.

EJECT

Sends a Top-of-form to the currently selected printer and resets
PROW() and PCOL() to zero.

ERASE <filename>.< ext>

Deletes the specified file from the disk.

FBREAD <expN1 > <memvar> [<memvarC/expN2>
[< expN3 > [expN4])]

Read from a binary mode file.

4-5

Chapter 4: TDBS Commands

4-6

FBWRITE < expN 1 > < memvar > [< expC/expN2 > [< expN3 >
[expN4)]]

Write to a binary mode file.

FCLOSE [< expN >]

Closes a file opened by FCREATE or FOPEN.

FCREATE < memvar > <file> < expN 1 > [< expN2 > [expN3 >])

Creates a DOS file and opens it for flat file 1/0.

FIND < character string>

Positions the record pointer to the first record with an index key
that matches the specified character string.

FLFIND < expN 1 > < memvar > < expC > [< expN2 >]

Locate next line in Line mode flat file which contains a target string.

FLREAD < expN > < memvar1 > < memvar2 >

Read a line from an ASCII text file.

FL WRITE < expN > < memvar > < expC >

Write a line to an ASCII text file.

FOP EN < memvar > <file> < expN 1 > [< expN2 >]

Open a DOS file for flat file 1/0.

FSEEK < expN1 > < memvar > < expN2 > [< expN3 >]

Position a flat file (either binary or text mode).

GO/GOTO < expN > /BOTTOM/TOP

Moves the record pointer to the specified record in the database
file open in the current work area.

HALT [<exp list>]

Terminates program processing after displaying the optional ex
pression list if present. Program displays "Press any key" after exit
and pressing any key returns to the calling TBBS menu. All files
are closed on exit.

Chapter 4: TDBS Commands

IF <condition> ... [ELSE ...] ENDIF

Permits conditional execution of commands with an optional alter
native group of commands if the condition is false (.F.).

INDEX ON < key exp> TO <file>

Create index file for the current database.

INPUT [<prompt>) TO < memvar >

Takes a numeric entry from the keyboard and stores it in memvar.

LOCATE [<scope>] FOR <condition> [WHILE <condition>)

Positions record pointer to the first record matching the specified
condition within the given scope for the current work area.

NOTE/* [<text>]/&& [<text>]

Allows non-executing comments on a new line within a program
source file. Comments following a && may be placed after any
command to add comments at the end of a line.

ON DISCONNECT [<command>]

Enables or disables an accidental disconnect handler.

ON ERROR [<command>]

Enables or disables an error code handler.

ON ESCAPE [<command>]

Establishes or removes an escape key handler.

ON KEY [<command>)

Establishes or removes a "hot key" handler.

ON NEWMAIL [<command>]

Allows "interrupt" handling of received mailbox data.

PARAMETERS < memvar list>

Specifies memory variables to receive passed values or references
to a called procedure. Matches WITH < parameter list> on DO.

Chapter 4: TDBS Commands

PRIVATE [ALL [LIKE / EXCEPT <skeleton>]] / < memvar list>
I< array list>

Hides the specified memory variables allowing you to have new
memory variables by the same name in a procedure and lower level
procedures without disturbing any values stored in the originals.

PROCEDURE < procedure name> ... [RETURN]

Identifies the beginning of a procedure.

PUBLIC < memvar list>/< array list>

QUIT

Declares memory variables or memory variable arrays to be global.

Ends program execution, closes any open files, and returns to the
calling menu in TBBS.

READ [SAVE] [FKEY] [SELECT)

Enters full screen editing mode using the current set of pending
GETs or the pending .FMT file instructions.

RECALL [<scope>] [FOR <condition>] [WHILE <condition>]

Removes the DELETED mark from database records.

RELEASE (ALL[LIKE/EXCEPT <skeleton>]] / < memvar list>

Erases memory variables.

RENAME < file1 >. < ext1 > TO < file2 >. < ext2 >

Changes the name of a file.

REPLACE (<scope>] (<alias>->]<field1> WITH <exp1>
[, < field2 > WITH < exp2 > , ...] [FOR <condition>]
[WHILE <condition>]

Changes the contents of fields to new values.

RESTORE FROM <file> [ADDITIVE]

Retrieves memory variables from a .mem file.

RETURN [TO MASTER]

Exit a procedure and return control to either the calling procedure
or the main program. Erases private variables created at this level.

Chapter 4: TDBS Commands

SAVE TO <file> [ALL [LIKE/EXCEPT <skeleton>])

Saves memory variables to a .mem file.

SEEK <exp>

Searches an index for the first key matching the expression.

SELECT < work area>/< alias>

Switches from the current work area to the specified work area.

SET ALTERNATE ON/OFF

Determines whether ? and ?? are echoed to the currently open
alternate disk file.

SET ALTERNATE TO [<file>] [APPEND]

Creates a file to capture ? and ?? ASCII output.

SET BEU ON/OFF

Determines whether the bell rings during data entry.

SET CENTURY ON/OFF

Determines whether dates display century.

SET COLOR TO [<standard> [,<enhanced>]]

Set screen display attributes.

SET CONFIRM ON/OFF

Determines if a return key is required to end GET field input.

SET CONSOLE ON/OFF

Determines whether the ? and ?? display to the screen.

SET DATE AMERICAN/ANSI/BRITISH/FRENCH/GERMAN/ITALIAN

Set the format for date type display and input.

SET DECIMALS TO < expN >

Sets the number of decimal places displayed for numeric values.

SET DELETED ON/OFF

Hides or makes visible records marked for deletion.

Chapter 4: TDBS Commands

4-10

SET DELIMITERS ON/OFF

Determines whether or not delimiters display for GET input.

SET DELIMITERS TO [< expC >/DEFAULT]

Specifies the characters used to delimit GET input fields.

SET DEVICE TO SCREEN/PRINT

Sends output of @ ••• SAY displays to screen or printer.

SET DISCONNECT [MAXINST <expN>][MAXREPS <expN>]

Controls limits during an ON DISCONNECT procedure.

SET DISPLAY RULES TO STD1/STD2/TBBS

Allows adjusting certain unusual border conditions for screen dis
plays to more closely match other dBASE language dialects.

SET DIVIDE BY ZERO TO ERROR/INFINITY

Set action to take on a divide by zero condition.

SET EDITOR

Controls features of the MEMO editor.

SET ESCAPE ON/OFF

Enables or disables a pending ON ESCAPE command.

SET EXACT ON/OFF

Determined whether exact matches are required for character
comparisons, or whether short string complete matches are enough
to qualify.

SET EXCLUSIVE ON/OFF

Determines whether a database file and its associated files are by
default opened for shared or exclusive USE.

SET FILTER TO [<condition>]

Makes a database appear as if it contains only the records meeting
the specified condition.

SET FIXED ON/OFF

Determines if decimal displays are or are not fixed point at the
current SET DECIMALS length.

Chapter 4: TDBS Commands

SET FORMAT TO [< .fmt file>] [NOCLEAR]

Activates or deactivates a format which executes whenever a
READ is encountered.

SET FUNCTION <key> TO [< expN >]

Allows each function key to be programmed with a character string.

SET INDEX TO [<file list>]

Opens the specified index file(s) or closes any opened index files.

SET INTENSITY ON/OFF

Sets on or off the display of GET fields in enhanced video mode.

SET MARGIN TO < expN >

Sets the left margin of the printer for output.

SET MEMOWIDTH TO < expN >

Determines the column width of memo field display.

SET ORDER TO [< expN >]

Sets specified open index file as the master index.

SET PRINT ON/OFF

Determines if output from ? and ?? is sent to the printer.

SET PRINTER TO [LPT1/LPT2/LPT3/LPT4)

Requests specified printer, or releases printer if none specified.

SET PROCEDURE TO [<file>]

Opens named file at compile time and includes all procedures
contained in it.

SET RELATION TO [<key exp> /RECNO0/ < expN > INTO
<alias>] [ADDITIVE]

Relates open work areas according to key expressions.

SET TYPEAHEAD TO < expN >

Tums keyboard typeahead on or off.

4-11

Chapter 4: TDBS Commands

4-12

SET SOFTSEEK ON/OFF

Allows relative key seeking. If the key is not found the record
pointer is positioned to the next highest existing key.

SET UNIQUE ON/OFF

Toggles inclusion of non-unique keys when creating a new index.

SET UPDATE BELL TO ON/OFF/ROLLBACK

Sets the alert condition for a shared record display update change
when using Transparent File Locking and the Transparent Screen
Update and Rollback on Collision features of TDBS. This is inde
pendent of the SET BELL command.

SKIP <expN>

Moves the record pointer in the current work area either forward
or backward the specified number of records.

STORE <exp> TO < memvar list> / < memvar > = <exp>

Stores the result of an expression to one or more memory variables.

SUM < expN list> [<scope>) TO < memvar list>
[FOR <condition>) [WHILE <condition>]

Sums a series of numeric expressions to memory variables for
records within the specified scope and qualifying conditions in
current work area.

TEXT ... ENDTEXT

Displays a block of text to the screen or printer.

TYPE <file> [TO PRINT]

Displays the contents of a text file.

UNLOCK [ALL]

Releases file and record locks previously established by the func
tions RLOCK(), FLOCK(), WAIT4RLOCK(), and
W AIT4FLOCK().

Chapter 4: TOSS Commands

USE [< .dbf file>] [INDEX < file list>][ALIAS <alias>]
[EXCLUSIVE] [READONL Y]

Opens an existing database (.dbf) file, its associated memo (.dbt)
file if any, and optionally associated index (.ndx) files in the current
work area.

USE [< .dbf file>] [ALIAS <alias>] MAILBOX [JOURNAL]

Establishes an intraprogram mailbox with the structure and initial
data of the specified single record .dbf file.

WAIT [< prompt>] [TO < memvarC >]

Suspends processing until a key is pressed.

ZAP
Removes all records from the active database file.

4-13

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Examples:

See Also:

4-14

II ? /??
11

?n? <exp list>

To display the results of one or more expressions separated by a
space.

< exp list> is the list of values of any data type to display. The list
may consist of any combination of expressions of any data types.

There are two forms of the command. ? by itself displays a carriage
return/line feed before displaying the results of the expression list.
The ?? sends only the results of the expression list, without any
leading carriage return, line feed thus allowing successive ?? com
mands to place output on the same line.

Note that the result of each expression in the list is separated by a
space.

? "Hello
? "there"

Results: Hello
there

This example shows use of the ?? to display on the same line.

? "Hello"
?? "there"

Results:

@ ••• SAY

Hello there

TEXT ... ENDTEXT

Syntax:

Purpose:

Arguments:

Options:

Examples:

See Also:

Chapter 4: TDBS Commands

II
@ ... CLEAR

@ <row>,<COI> CLEAR [TO <row2>,<COl2>

To clear a rectangular area on the screen

II

< row>,< col > define the coordinates of the upper left corner of
the area to clear.

TO: The TO < row2 >, < col2 > clause defines the lower right
corner coordinates of the area to clear. If this option is absent, the
then the lower left corner defaults to 24, 79.

@ 15, 15 CLEAR TO 20, 30
@ 6, 0 CLEAR

CLEAR

4-15

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Options:

4-16

II @ ... SAY ... GET

@ <row>,<col> [SAY <exp> [PICTURE <expC))
[GET <variable> [PICTURE < expC]
[RANGE < expN 1 >, < expN2 >))
[NOEDIT] [NOENHANCE] [READONL Y] [SHARED] [EDIT]

11

To display and input formatted data at specified row and column
positions. Note: Use of this command requires the user to be
configured for ANSI mode in the TBBS caller profile.

<row> is the row of the start of the display.
<col> is the column of the start of the display.

SAY: The SAY option displays the result of the following expres
sion (which may be of any type) at the specified coordinates on the
current DEVICE. TDBS supports two devices for the SAY option,
the console screen and the printer. Normally this output is directed
to the screen, but the SET DEVICE TO command may be used to
redirect the output to the printer or the screen.

@ . . . SAY s to the printer behave slightly differently than they do
to the screen. If the row and column address given are less than the
current printer position, then an eject to a new page is done before
the text is output. So printing must proceed in order line by line
and left to right.

On the screen, SAY s display using the standard color setting of the
SET COLOR TO command. This is White on Black by default.

GET: The GET option displays a field or memory variable at a
specified screen coordinate and adds it to the list of pending GETs
in the GET buffer. A subsequent READ invokes the full screen
editing mode and allows the user to edit the contents of the vari
ables in the pending GETs. See the READ command for a com
plete list of the editing keys and functions available.

TDBS supports GETs which reference fields from other work areas
if the fields are referenced using the alias: For Example:

@ 25,36 GET alias->field

Chapter 4: TDBS Commands

GETs display in the ENHANCED color setting of the SET
COWR TO command. The output of GETs is only to the screen,
it cannot be redirected to the printer.

PICTURE: The PICTURE option defines the format options for
display for both GET and SAY, and the input format for a GET
when a READ is executed. There are two portions to a PICTURE
format; Functions and the Template. Functions apply to the entire
SAY or GET, while templates affect characters position by posi
tion.

Functions: A PICTURE function is a symbol preceded by an@
character inside the character string argument. If a template fol
lows the function, it must be preceded by a space. More than one
function may be specified, but only the first is preceded by the @
character. The functions available are:

Fune Type Action

A C Allows only alphabetic characters into a GET
B N Displays numbers left justified
C N Displays CR after positive numbers
D D,N Displays dates in SET DATE format
E D,N Displays dates in European format
K All Clears GET if first key is not a cursor key
R C Inserts non-template characters
S<n> C Allows horizontal scrolling within a GET
X N Displays DB after negative numbers
z N Displays zero as blanks
(N Encloses negative numbers in parenthesis with

leading spaces
) N Encloses negative numbers in parenthesis without

leading spaces
C Converts alphabetic characters to upper case

Templates: Template symbols follow any functions specified in the
PICTURE string. Either functions, or template characters or both
may be specified in a PICTURE string. Each position in the output
or input stream is mapped to the symbol in the same position in the
template. The template symbols provided and their actions are:

4-17

Chapter 4: TDBS Commands

4-18

Template

A
N
X
9

L
y

$

*

Action

Displays only alphabetic characters
Displays only alphabetic and numeric characters
Displays any character
Displays digits for any data type including sign
for numeric data type.
Displays digits, signs, and spaces for any data type
Displays logicals as T or F
Allows only Y or N
Converts an alphabetic character to upper case
Displays dollar sign in place of leading space in
numeric data type
Displays an asterisk in place of a leading space in
a numeric data type
Specifies a decimal point position
Specifies a comma position

Any other characters specified in the template overwrite the char
acter at the same position in the source text input or output. If,
however, you use the "R" function, non-template characters are
inserted into the display. On GET input, the cursor will skip over
these inserted characters.

RANGE: The RANGE option limits entry into date and numeric
type variables by specifying the lower and upper allowable values.
If the value input is not within the specified range, the GET will not
be accepted. The field or memory variable cannot be altered until
a value within the specified limits is entered.

KEYWORDS: TDBS adds four keywords to the GET and one
keyword to the SAY command to allow special functions.

SHARED: This keyword may be added to the SAY command if a
database field is being displayed. If this keyword is present, the
SAY information is saved in a special form in the GETPOOL and
if another user changes the displayed field during a READ com
mand, that change will be automatically shown. This field cannot
be edited during the READ.

Notes:

Examples:

Chapter 4: TDBS Commands

NOENHANCE: This keyword allows a GET field to be displayed
in normal mode with no delimiters even though SET ENHANCED
and/or SET DELIMITED are ON. It overrides these commands
for this field only.

NOEDIT: This keyword makes this GET field inaccessible during
a READ command. It causes a GET to act the same as a SAY with
the SHARED keyword.

READO NL Y: This keyword only has meaning if the GET field is a
memo type. In this case, if the field is opened, the memo editor is
entered in READONL Y mode regardless of the current SET
EDITOR setting. It allows overriding SET EDITOR for this memo
field only.

EDIT: This keyword is the complement of READONL Y. If the
GET field is a memo type and the user opens it then the memo
editor is allowed to update the field regardless of the current setting
of the SET EDITOR command.

The length or type of a variable or a field may not be changed during
a READ operating on a GET command. Any altered file fields are
written to the file simultaneously at the end of the READ com
mand. If fields from a shared file are part of a multiuser
GET/READ command sequence, then the TDBS Transparent
Screen Update and Rollback on Collision feature is automatically
invoked. This feature will immediately post any changes to your
displayed fields (made by another user) to your screen as soon as
they are committed, allowing you to view changes dynamically.

@ ROW()+2,6 SAY "Relative Screen Display"

This shows use of the ROW() function to position output relative
to the current screen position. Note: These functions always return
the screen position at the beginning of the command line.

4-19

Chapter 4: TDBS Commands

See Also:

4-20

FullName = SPACE(30)
@ 2,15 SAY "Enter your full name"

GET FullName
READ

This example shows establishing the length of the field by presetting
it to a fixed length string.

choice= 0
@ 15,30 SAY "Select a number";

GET Choice PICTURE "@Z 9"
READ

This example shows numeric input (the variable type and default
value are established initially). The PICTURE command displays
the zero as a space and limits input to a single numeric key.

@ 15,7 GET charge->Amount
@ 16,7 GET customer->Name
READ

This example shows the use of alias qualifiers to input data to two
different database records in a single screen read. This operation
can be tricky, and should be very carefully thought out.

SET FORMAT
CLEAR GETS
READ
SETCONFIRM
SETBELL
SET UPDATE BELL
SET DELIMITERS
SET INTENSITY
SETCOLORTO
SETEDITOR
SETDEVICE
COL(), ROW(), PCOL(), PROW(), SETPRC()

Syntax:

Purpose:

Arguments:

Option:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II @ ... TO
11

@ <row>,< col> TO < row2 >, < col2 > [DOUBLE]

This command draws a box on the screen using either double or
single lines.

<row> and <col> define the upper left corner of the box while
< row2 > and < col2 > define the lower right corner of the box. If
<row> and < row2 > are the same, this command will draw a
horizontal line, while if < col> and < col2 > are the same a vertical
line will be drawn.

DOUBLE: If this option is specified, the box or line is drawn using
a double line. By default a single line is used.

As with all of the @ command variations, this command requires
that ANSI bet configured on in the user's TBBS profile.

@ 0,0 TO 24,79 DOUBLE

Results: A double line border is drawn around the entire
screen

@ 10,20 CLEAR TO 20,40
@ 10,20 TO 20,40

Results: First the box area is cleared, then a single line bor
der is drawn around it.

@ ... CLEAR

4-21

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Option:

Usage:

Example:

See Also:

4-22

II ACCEPT
11

ACCEPT (<prompt>) TO < memvar >

Allow a text string to be entered from the keyboard into a specified
memory variable.

< memvar > is the name of a memory variable where the text string
entered from the keyboard is to be placed.

Prompt: If the optional <prompt> string (or character expres
sion) is present, it will be displayed before data input.

ACCEPT optionally prompts for user input and waits for a
response. The response is stored as a character string in the
specified memory variable, and may be from 1 to 254 characters in
length. If the user presses only the return key, the specified memory
variable is set to a null string (length= 0). This command does
NOT require ANSI to be set on in the TBBS user profile. Note:
the specified memory variable must already exist, the ACCEPT
command cannot be the first definition of the variable.

ACCEPT "Enter your name" TO Name

@ ... SAY ... GET /READ
INPUT
WAIT
INKEY()

Syntax:

Purpose:

Usage:

Example:

Multiuser:

See Also:

Chapter 4: TDBS Commands

II
APPEND BLANK]

APPEND BLANK

This command adds a new blank record to the end of the database
file in the currently selected work area.

The APPEND BLANK command adds.a single blank record to the
end of the database file. Any active index files are immediately
updated and this record becomes the current record.

USE Mail && Open database file
SET FORMAT TO MScreen && Define screen fmt
? RECNO() && 1 (1st rec)
? RECCOUNT () && 90 (last rec)
APPEND BLANK && Add a blank rec
? RECNO() && Result: 91
READ && full scrn fill-in

When an APPEND BLANK is issued on a shared file, TDBS will
transparently lock the file, add the record, and unlock the file. This
process cannot fail in the TBBS environment, and thus all indexes
and the database file are always kept consistent. If you wish to keep
the record locked after the APPEND BLANK, you must issue a
FLOCK() successfully before APPENDing. After the APPEND
BLANK you may then issue an RLOCK() which cannot fail to
release all of the file except the newly added blank record.

APPEND FROM
SET FORMAT TO
READ
RECNO(),RECCOUNT()
FLOCK(), RLOCK(), WAIT4FLOCK()

4-23

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Options:

Usage:

4-24

II
APPEND FROM

11

APPEND FROM <file> [<scope>)
[FOR <condition>) [WHILE <condition>)
[TYPE) [SDF)/[DELIMITED [WITH BLANK/< char>))

This command appends database records from an external file to
the database file in the currently selected work area. The external
file may be either another database or an ASCII file.

<file> is the name of the external file to append. If the
DELIMITED option is not specified, the extension is assumed to
be .DBF, if the DELIMITED option is specified then the extension
is assumed to be .TXT unless one is specified.

Scope: The < scope> limits the range of the records which are
appended to the file.

Condition: The FOR and WHILE <conditions> restrict which
records will be appended to the file.

Type: There are three types of files which TDBS can import: SDF,
DELIMITED, and .DBF files.

SDF: This type is a System Data Format ASCII file. Each record
is a fixed length, ends with a carriage return and line feed, and the
end-of-file mark is a Ctrl-Z (OxlA).

DELIMITED: This options identifies the external file as an ASCII
file where fields are separated by commas and fields are bounded
by double quote marks (the default delimiter). If the optional
WITH < char> is specified, then <char> replaces double quotes
as the delimiting character. Fields and records are variable length
and each record ends with a carriage return and line feed. A "'Z
(lAh) is interpreted as an end-of-file mark if encountered before
the physical end-of-file.

If the external file is a database file, only data with identical field
names and data type are appended to the current database. If the
width for a field in the active database is smaller than the width in
the external database, TDBS will truncate the field. If the field in

Multiuser:

Example:

See Also:

Chapter 4: TDBS Commands

the external database is smaller than the active database TDBS will
pad the data to fit.

If SET DELETED is OFF, records that are marked for deletion
are appended to the current database (but are not marked deleted).
IfSET DELETED is ON, then records marked for deletion are not
appended to the current active database.

TDBS will transparently interlock an APPEND FROM command
on a record by record basis. This means that even if two or more
users are appending data to the file at the same time, the database
and index integrity is preserved. You only need to issue a FLOCK(
) function, or open the file for EXCLUSIVE USE, if you wish to
prevent any other records from being appended to the same file
while this append is taking place.

This example appends all records from the database file
ORDTMP.DBF into the currently open ORDERS.DBF file.
Records in ORDTMP which are marked for deletion, or which
have no PartNo specified are not appended.

USE Orders
SET DELETED ON
APPEND FROM OrdTmp FOR PartNo <>" "

This example appends a comma delimited ASCII file to the current
work area's database file.

USE Orders
APPEND FROM ordAscii DELIMITED

COPYTO
FLOCK(), W AIT4FLOCK()

4-25

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Options:

Example:

See Also:

4-26

II AVERAGE

AVERAGE <expN list> (<scope>] TO <memvar list>
[FOR <condition>] [WHILE <condition>]

II

Calculates the average (arithmetic mean) of one or more specified
numeric fields.

< expN list > is a list of field names or expressions of numeric fields
which are to be averaged for each record processed.

< memvar list > is a corresponding list of memory variables which
will receive the averages.

Scope: The < scope > option restricts the range of records which
will be averaged.

Condition: The FOR and WHILE <conditions> qualify which
records within the database file will be averaged. Only those
records which qualify will be used.

The command

AVERAGE Ext_Price TO AvgPrice

calculates the average of the numeric field Ext_ Price for all records
in the database, and stores the result in the numeric memory
variable named AvgPrice.

SUM
COUNT

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

II CLEAR II
CLEAR

To clear the screen and home the cursor.

After CLEAR the screen is erased, and the cursor is at 0,0. Note:
This command also releases any pending GETs from the GET
buffer.

@ ••• CLEAR
CLEAR GETS

4-27

Chapter 4: TDBS Commands

Syntax:

Purpose:

See Also:

4-28

II
CLEAR ALL

11

CLEAR ALL

Closes any open files, releases all memory variables, releases any
pending GETs from the GET buffer, and sets the SELECTed work
area to 1.

CLEAR MEMORY
CLEAR GETS
CLOSE
RELEASE

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

II
CLEAR GETS

11

CLEAR GETS

Releases all pending GETs from the GET buffer.

As each @ .. • GET command is executed, the screen position,
variable and any associated PICTURE are stored in the GET
buffer. The next READ command uses these stored GET com
mands to do full screen editing. If the SA VE option is used on a
READ, or if a READ has not yet been performed, these commands
remain in the buffer and new @ ... GET commands are added to
the GET buffer. The CLEAR GETS command releases all stored
GETs from the GET buffer.

@ ... CLEAR
CLEAR
CLEAR ALL

4-29

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

Example:

See Also:

4-30

II
CLEAR MEMORY

II
CLEAR MEMORY

Releases all memory variables, both PUBLIC and PRIVATE.

This command is used when you want to release all memory vari
ables both public and private. This is in contrast to the RELEASE
ALL command which only releases PRIVATE variables. All vari
able memory is returned to the free pool and may be used again.

PUBLIC Var
var= SPACE(l0)
? TYPE ("Var")
CLEAR MEMORY
? TYPE ("Var")

CLEAR ALL
RELEASEALL
TYPE()

&& Result: c

&& Result: u

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

II
CLEAR TYPEAHEAD

11

CLEAR TYPEAHEAD

Empties the keyboard TYPEAHEAD buffer.

CLEAR TYPEAHEAD allows the program to delete any charac
ters which the user has input, but which have not yet been read by
the program. This is particularly useful if the program wants to be
sure it waits for a fresh input. Note: Normally, TDBS has an output
buffer as well, and the program execution may "run ahead" of the
characters being sent to the user. CLEAR TYPEAHEAD will wait
until all output has been sent to the user's terminal before purging
the input buffer.

SET TYPEAHEAD
LASTKEY(), NEXTKEY(), INKEY()

4-31

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

See Also:

4-32

II
CLOSE

CLOSE [ALUALTERNATE/DATABASES/FORMAT/INDEX]

To close the specified files.

11

ALL: Closes all alternate, database, and index files in all work areas.
In addition it releases all active filters, relations, and full screen
format (.FMT) files.

ALTERNATE: Closes any currently open alternate file. Performs
the same action as SET AL TERNA TE TO with no arguments.

DATABASES: Closes all open database and associated index files
in all work areas. Also releases all active filters. Does not affect
any SET FORMAT which is active.

FORMAT: Releases any active SET FORMAT file and returns the
READ command to normal operation. Performs the same action
as SET FORMAT TO with no argument.

INDEX: Closes any index files open in the current work area.
Leaves .DBF file positioned to the current record.

Several other TDBS commands or actions do an implied CLOSE
ALL command as follows:

QUIT
HALT
An error which aborts the program
Loss of carrier or operator abort of the user

QUIT
HALT
SET ALTERNATE TO
SET INDEX TO
USE
CLEAR ALL

Syntax:

Purpose:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II
CONTINUE

II
CONTINUE

Resumes the pending WCA TE sequential search.

CONTINUE searches from the current record position for the next
record meeting the criteria of the most recent LOCATE command
issued. If no match is found, EOF() is set to true (.T.) and
FOUND() is set to false (.F.). If another record meets the criteria,
then FOUND () is set to true (.T.) and the current record pointer
is set to the matching record.

CONTINUE works only with LOCATE, it cannot be used with
FIND or SEEK to find the next matching record. The search is
sequential, and thus much slower than the indexed search of FIND
or SEEK since all records in the file must be read in order to find
matches. However, the field being searched does not need to be
indexed to use WCATE and CONTINUE.

USE MyFile
? RECCOUNT () && Result: 10
LOCATE FOR state = "CO"
? FOUND(), RECNO(), EOF() && • T. 4 .F.
CONTINUE
? FOUND(), RECNO(), EOF() && • T • 6 .F •
CONTINUE
? FOUND(), RECNO(), EOF() && .F. 11 .T.

LOCATE
FOUND()

4-33

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Options:

Example:

See Also:

4-34

II COPY TO

COPY TO <file> [<scope>) [FIELDS < field list>)
[FOR <condition>) [WHILE <condition>)
[TYPE) [SDF)/[DEUMITED [WITH < char>))

Copy all or part of the current database file to a new file.

11

<file> is the name of the new file. If DELIMITED is not present,
the extension is .DBF and the new file will be a database type. If
the DELIMITED option is present, the new file will be an ASCII
file and the default extension is .TXT unless specified.

FIELDS: This option specifies a list of which fields to copy. If it is
omitted, then all fields in the current database are copied.

Scope: The < scope > limits the range of the records which are
copied to the new file.

Condition: The FOR and WHILE <conditions> restrict which
records will be copied to the new file.

SDF: The SDF type outputs the file as a System Data Format ASCII
file. Records are fixed length separated by a carriage return/line
feed. Dates and logicals are treated as in DELIMITED below.

DELIMITED: If this option is specified, then the new file is an
ASCII file. Normally each field will be separated by a comma and
enclosed in double quotes (the default delimiter). The WITH
option allows the double quotes to be changed to any character you
wish. On each field all leading and trailing blanks are removed.
Dates are written as YYYYMMDD, and logical fields are written
as Tor F (without periods).

COPY TO Nameco FOR State= "CO" DELIMITED

Makes an ASCII file of all records from the state of Colorado.

APPEND FROM
SET DELETED

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

COPY FILE

COPY FILE <file>.< ext> TO < file2 >. < ext2 >

To duplicate any type of file.

< file > . < ext> is the name of the source file.
< file2 > . < ext2 > is the name of the destination file.

COPY FILE copies files to and from the HOMEPATH drive
unless a path is specified. If a file already exists by the name of the
destination file it will be overwritten.

COPY FILE Data.bak TO Data.db£

CLOSE
COPY
USE

4-35

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Options:

Example:

See Also:

4-36

II
COPY STRUCTURE

II
COPY STRUCTURE [FIELDS < field list>] TO <file>

Creates an empty database file with field definitions from the
current database file.

< file > is the name of the destination database file. The default
extension is .dbf.

FIELDS: The < field list > specifies which fields are to be used to
define the new database file. If this option is not specified, then all
fields are present in the new database file.

USE Charges
COPY STRUCTURE TO SUJIUllary;

FIELDS CustNo, Amount
USE SUJIUllary
APPEND FROM Charges

Creates a new database with only the customer number and amount
fields defined. Then the database is filled with values from the
current database.

COPY STRUCTURE EXTENDED
CREATE

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

COPY STRUCTURE
EXTENDED

COPY TO <file> STRUCTURE EXTENDED

Create a database file whose contents are the field definitions of
the current database file.

< file > is the name of the structure extended database file.

COPY STRUCTURE EXTENDED creates a database file with
four defined fields named: FIELD_NAME, FIELD_TYPE,
FIELD_ LEN, and FIELD_ DEC. Each record of this file defines
one field of the original database. This allows you to create and
modify the structure of a database under program control. You can
use CREATE FROM to create a new database file from the
modified structure extended file.

USE File
COPY TO struc STRUCTURE EXTENDED
USE Struc
DO WHILE .NOT. EOF()

? Field_Name, Field_Type, Field_Len,;
Field Dec

SKIP
ENDDO

Results:

FNAMEC150
LNAMEC150
ADDR1C200
ADDR2C200
STATEC20
ZIPC50
AMOUNTN82

CREATE
CREATE FROM

4-37

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Options:

Example:

See Also:

4-38

II
COUNT

II
COUNT [<scope>] TO <memvar>

[FOR <condition>] [WHILE <condition>]

Tallies selected records from the current work area to a specified
memory variable.

< memvar > is a memory variable which will contain the count after
the command is executed.

Scope: The < scope > option limits the range of records to count.

Condition: The FOR and WHILE <conditions> select which
records are counted.

COUNT FOR Lname = "Smith" TO Smithcnt

This will produce a count of the number of records in the database
file where the last name is Smith.

AVERAGE
SUM
TOTAL
RECCOUNT()

Syntax:

Purpose:

Argument:

Usage:

See Also:

Chapter 4: TDBS Commands

II
CREATE

II
CREA TE <file>

Creates an empty STRUCTURE EXTENDED file.

< file > is the name of the empty structure extended file.

This command allows you to create an empty structure extended
file. You can then write a subroutine which allows interactive or
"canned" input of records to this file to define a structure for a new
database. Then the file may be used in conjunction with the CRE
ATE FROM command to create a new database with the defined
structure.

Note: The specified file is automatically opened in the current work
area after it is created.

CREATE FROM
COPY STRUCTURE EXTENDED

4-39

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Example:

4-40

II
CREATE FROM

11

CREATE <file1 > FROM <file2>

Creates a new database file from a structure extended file.

< filel > is the name of the new database file to create.
<file2> is the name of the STRUCTURE EXTENDED fde
which specifies the structure of the new database file.

CREATE FROM produces a new database file whose field defini
tions are taken from a structure extended fde. See the COPY
STRUCTURE EXTENDED file for the definition of such a fde.

CREATE "Struc"+ULINE()
USE "Struc"+ULINE()
DO WHILE .T.

VN = SPACE(l0)
VT= SPACE(l)
VL = 0 ,,
VD= 0
@ 5,0 SAY "Name: "GET VN
@ 6,0 SAY "Type: "GET VT
@ 7,0 SAY "Length:" GET VL PICT "999"
@ 8,0 SAY "Decimals:" GET VD PICT "999"
READ
IF (.NOT. EMPTY(VN))

APPEND BLANK
REPLACE Field Name WITH VN, ;

Field_Type WITH VT,;
Field Len WITH VL,;
Field Dec WITH VD

ELSE
EXIT

ENDIF
ENDDO
USE && close strucnn
CREATE NewFile FROM "Struc"+ULINE()
ERASE "Struc"+ULINE()+".DBF"

See Also:

Chapter 4: TDBS Commands

This example allows interactive creation of a database file with user
specified structure. It also shows the use of the ULINE() function
to guarantee unique temporary file names in a multi-line setting.

Caution: To comply with dBASE Ill Plus the CREATE
FROM command will use all records in the structure
extended file, even if they are marked deleted! Thus
deleting a record will not remove it from a structure
extended file. To remove a record you must not only
delete it, but copy the file with SET DELETED ON so the
record is physically removed.

COPY STRUCTURE EXTENDED
CREATE

4-41

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

4-42

II
DECLARE

II
DECLARE < array1 > [< expN 1 >]

[, < array2 > [< expN2 >]] ...

Creates one or more memory variable arrays.

< array> is the name of an array to create. Note that you can
create more than one array with a single DECLARE statement.

< expN > is the number of elements in the array up to a maximum
of 40%. An array DECLARED with less than one element defaults
to one, more than 40<J6 causes an error message. (Note: Because
in TDBS 1.2 the MEMV AR area is limited to 6k, you will run out
of memory before you can allocate a 40<J6 element array. The real
limit is based on the memory available in this release).

Note: The square brackets surrounding < expN > are
a required part of the command syntax, and in this case
do not signify an optional argument.

DECLARE creates single dimensional PRIVATE arrays. Domain
operation for arrays is the same as for other memory variables, so
if any PUBLIC or higher level PRIVATE arrays by the same name
already exist, they are hidden until the program returns from this
level (See Memory Variable Domains in Chapter 2).

Unlike memory variables, arrays cannot be saved in .MEM files
using SA VE TO and RESTORE FROM.

To assign a value to an array element, use the normal memory
variable assignment operator (=) or the STORE TO command.
To store a value to an entire array use the AFILL() function. To
retrieve a value from an array, refer to the element using a subscript
indicating its position in the array. The subscript is indicated in
square brackets following the array name, and must always be
present. The subscript may be any numeric expression.

Examples:

See Also:

Chapter 4: TOSS Commands

To determine the number of elements in an array, use LEN() by
specifying only the array name (with no subscript) as the function
argument.

Data Type: Elements within the same array may be mixed data type
and obey all typing rules of ordinary memory variables. TYPE()
returns an "A" for an array reference and the normal data type if an
array element is referenced by subscript.

Passing Parameters: Array and Array elements can be passed as
parameters to procedures the same as any other memory variables.
Arrays are passed by reference while array elements are passed by
value.

PUBLIC arrays: To create PUBLIC arrays, use the PUBLIC
command. PUBLIC arrays follow the same rules as private arrays
with the exception of their domain.

The following example creates an array, assigns values to the
elements, and then displays them.

DECLARE array[5]
array(l] = "Hello"
array(2] = 1234
? array[l]
? array(2]

&& Result: Hello
&& Result: 1234

This example demonstrates macro array references.

x="Vl[5]"
y="Vl[3]
DECLARE &x &&create array Vl with 5 elements
&y = "abc" && assign "abc" to element 3

PRIVATE
PUBLIC
ADEL(), AFILL(), AINS(), ASORT(), ADSORT()

4-43

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

Example:

Multiuser:

See Also:

4-44

II DELETE

DELETE [<scope>] [FOR <condition>]
[WHILE < condition>]

Marks one or more records for deletion in the current database.

II

Scope: This option limits the range of records in the file which will
be deleted. If no scope is specified, then the default is the current
record if no condition is specified. If a condition is specified, then
the default scope is ALL.

Condition: The FOR and WHILE options specify the conditions
used to test records in the file for deletion. Records which match
the specified conditions are marked for deletion.

DELETE marks records with the DELETED() attribute. These
records may be filtered with SET DELETED ON. A record which
is marked deleted, may have the mark removed by use of the
RECALL command. If you need to remove all records from a
database, use the ZAP command.

Use File
? RECNO()

DELETE

? DELETED()

&& Result: 1

&& Result: .T.

When a file is shared, TDBS will transparently update a record
which is marked deleted. All other users of this record will imme
diately see the record marked as deleted. No special record or file
locking is required.

RECALL
SETDELETED
ZAP
DELETED()

Syntax:

Purpose:

Option:

Usage:

See Also:

Chapter 4: TDBS Commands

II
DIR

11

DIR [< path>] [<skeleton >]

Displays a listing of files from the specified path.

Path: This option may be used to specify a drive and/or path other
than the HOMEPATH to list.

Skeleton: This option allows a wildcard specification to select only
certain files to list in the directory.

DIR displays one of two formats, depending on whether a skeleton
is given or not. If no skeleton is specified, then a listing of all .DBF
database files is given, including the name, number of records, and
last date modified for each file. If a skeleton is specified, then all
files which match are displayed with name, extension, number of
bytes, and date of last update.

HOMEPATH()

4-45

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Option:

Usage:

Compiling:

See Also:

4-46

II
DO

DO < procedure> [WITH < parameter list>)

Calls a procedure one level down and optionally passes
parameters.

II

<procedure> is the name of the procedure to be executed.

WITH: Allows a < parameter list> to be specified to pass values
to the called procedure. This is a list of up to 100 parameters
separated by commas. Each parameter may be either a single
memory variable, or an expression. Memory variables may be
passed either by reference or by value.

Using the WITH clause passes parameters to the specified proce
dure. If a parameter is a field or an expression, it is evaluated and
the resulting value is passed to the subprocedure. A parameter
consisting of a single memory variable is passed by reference if the
receiving PARAMETERS command uses the same name as the
name given in the WITH parameter list. Otherwise, memory vari
ables are also passed by value. Memory variables passed by refer
ence may be modified by the subprocedure to return values.

The PARAMETERS command in the subprocedure must have a
parameter list with the same number of arguments to receive the
passed parameters.

When the TDBS compiler encounters a DO statement with a
procedure name which is not already known, it searches the default
directory for a file by that name and compiles it if found. See the
Installation section under AUTOCOMPILE for more details on
this compiler feature.

PARAMETERS
PRIVATE, PUBLIC
PROCEDURE
RETURN
SET PROCEDURE

Syntax:

Purpose:

Options:

Usage:

See Also:

Chapter 4: TDBS Commands

II
DO CASE

II
DO CASE
CASE <condition>

<commands>
[CASE <condition>

<commands> ...]
[OTHERWISE

<commands>]
ENDCASE

Creates a programming structure which allows the execution of
only one out of several blocks of commands depending on which
set of associated conditions is true (.T.).

OTHERWISE: If none of the CASE <condition> expressions
evaluate to true (.T.), the commands following the otherwise state
ment are executed up to the next ENDCASE statement.

The DO CASE structure is used when only one option out of several
alternatives is to be selected. As soon as a single CASE < condi
tion> is encountered which evaluates to true (.T.) then TDBS will
perform all the commands between that CASE statement and
either the next CASE statement, OTHERWISE statement, or
ENDCASE statement. From that point on all other CASE state
ments are ignored, whether or not they are true, and execution
resumes with the first command following the ENDCASE state
ment. If none of the CASE < condition> expressions evaluates as
true, then any commands listed beneath the optional OTHER
WISE statement will be executed. If none of the CASE < condi
tion> expressions are true, and there is no OTHERWISE
statement, then none of the commands between the DO CASE and
the ENDCASE statement are executed.

DO CASE structures may be nested within other DO CASE struc
tures up to a level of 255 levels.

IF ... EI..SE ... ENDIF

4-47

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Options:

Usage:

4-48

II
DO WHILE

DO WHILE <condition>
<commands>
[EXIT]
<commands>
[LOOP]
<commands>

ENDDO

11

Creates a programming structure which repeatedly executes a
block of commands while a condition evaluates as true (.T.).

<condition> is evaluated each time the DO WHILE loop is
executed and controls the DO WHILE loop execution flow.

EXIT: The EXIT command unconditionally branches to the first
command following the END DO command. This ends the loop no
matter how the < condition > expression evaluates.

WOP: The LOOP command unconditionally branches to the most
recently evaluated DO WHILE command. The controlling < con
dition> is again evaluated to determine the next cycle of the loop.

The DO WHILE structure executes a block of commands
repeatedly as long as the controlling < condition > expression
evaluates to true (.T.). If the < condition> expression evaluates
to false (.F.) at the beginning of a loop, the program will branch to
the next instruction following the END DO command.

EXIT is used to terminate a DO WHILE structure based on some
internal condition other than the controlling condition.

LOOP is used to prevent execution of some commands within the
DO WHILE based on some intermediate condition. It branches
immediately back to the DO WHILE command line.

Macros:

Examples:

See Also:

Chapter 4: TDBS Commands

Macros may be used in the DO WHILE control expression. They
are re-evaluated on each loop as the expression is evaluated.

An example of WO Ping within a DO WHILE structure:

DO WHILE <condition>
<initial commands>
IF <intermediate condition>

LOOP
ENDIF
<continued commands>

ENDDO

An example of Repeat Until looping in a DO WHILE structure:

more= .T.
DO WHILE more

<commands>
more= <until condition>

ENDDO

An example of EXITing a DO WHILE structure on a condition:

DO WHILE .T.
<commands>
IF <exit condition>

EXIT
ENDIF

ENDDO

DO CASE
IF ... ELSE ... ENDIF

4-49

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Notes:

Examples:

See Also:

4-50

II
DOTBBS

11

DOTBBS TYPE <expN> OPTDATA <expC>

To allow a TDBS program to "shell" into TBBS and execute internal
TBBS functions, or chain to another option module.

< expN > is a TYPE= number per the TBBS menu format. It
must be in the range 1-255. Note: It must represent a valid TBBS
internal function or installed option module function.

< expC > is a O to 64 character string which supplies any optional
data required by the specified TBBS command.

This command allows a TDBS program to use the internal TBBS
menu functions as subroutines. This allows such capabilities as
downloading files from a TDBS program, etc. This command does
a "CLOSE ALL" before it calls the specified TBBS menu action
routine, so all work areas and any alternate file will be closed upon
return.

Note: Commands which cause menu movement (TYPE= 5, 12, 35,
and 45) or change user logon status (TYPE= 10 and 43) or which
invoke an option module (TYPE= 200, 205, etc.) chain "one way"
only. For these commands any ON DISCONNECT routine in the
current TD BS program is called, all files are closed, and there is no
return to this TDBS program.

If the underlying TBBS function suffers a non-recoverable error,
the calling program is not always able to detect that fact on the
return from a DOTBBS command. The DOTBBS command re
quires TBBS 2.2 or newer, and will be rejected if it is attempted on
TBBS 2.1. The DOTBBSQ function may be used to see if the
underlying TBBS system will support this command.

DOTBBS TYPE 4 OPTDATA "D:\FILES\FARLIST /NTL"

DOTBBS TYPE 1 OPTDATA "C:\TEXT\FILE.DOC/D"

DOTBBS()

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

II
EJECT

11

EJECT

Advances printer to top-of-form.

EJECT causes the currently selected printer to advance to the top
of page by sending a form feed character (ASCII 12). The internal
printer ROW and COL are reset to 0,0.

You must use the SET PRINTER TO command or the W AIT4LPT
function to successfully request a printer before the EJECT com
mand will have any effect. If you don't currently "own" a printer,
then the EJECT command will do nothing.

SET PRINTER TO
WAIT4LPT()
PROW(), PCOL()

4-51

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Example:

See Also:

4-52

II ERASE

ERASE [<path>] <file>.<ext>

Removes the specified file from the disk.

11

< file> . < ext > is the name of the file, including extension which
is to be deleted. By default this file is assumed to exist in the
HOMEPA TH directory. You may optionally specify a full path to
ERASE a file on any drive in any directory.

A TDBS program has no restrictions on the files this
command can delete. Do not delete any of the TBBS
system control files. If you delete any of the TBBS
system control files, system malfunction may result.

? FILE("Temp.txt")
ERASE Temp.txt
? FILE("Temp.txt)

USE
CWSE
FILE()
HOMEPATH()

&& Result: .T.

&& Result: .F.

Syntax:

Purpose:

Arguments:

Usage:

Chapter 4: TDBS Commands

II
FBREAD

11

FBREAD < expN 1 > < memvar1 > [memvar2/expN2 >
[< expN3 > [< expN4 >]])

Read from a binary mode file.

< expNl > is the handle of the binary file (returned by the FOPEN
or FCREATE command).

< memvarl > receives the numeric count showing the number of
bytes actually read by this command. If O bytes are read either the
EOF was encountered or an error occurred. The FERROR()
function will determine which it was. If < memvarl > is less than
the read size, then EOF was encountered before the buffer was
filled.

< memvar2/expN2 > specify the buffer to use for the read. If
< memvar2 > is used it must already exist, be character type and
have the length already set by placing dummy data into the string.
In this case, the string itself is used as the buffer for the read. If, on
the other hand, < expN2 > is used, it specifies the handle of an open
flat file (usually this one). That file's buffer will then be used to
determine the read size and it will be the read destination. You
may open this file without a buffer and specify the buffer of another
open file if you wish and thus share the memory used by buffering.

< expN3 > if specified indicates the first byte of the buffer to read
into. 1 (or any number less than 1) specify the start of the buffer.
Bytes "skipped over" in the buffer are not changed by the read.

< expN4 > if specified indicates the number of bytes to read from
the file in the range O to 32,767 bytes. If < expN4 > is larger than
the buff er, the extra bytes are skipped over in the file. If < expN4 >
is smaller than the buffer size, then the extra bytes in the buffer are
left unchanged. If < expN4 > is not specified (or is -1) the size for
the read is the number of bytes between the first byte selected by
<expN3> and the end of the buffer.

FBREAD allows reading of binary data from a file which has been
opened by FOPEN or FCREATE. You may use FBREAD to read

4-53

Chapter 4: TDBS Commands

Example:

See Also:

4-54

data into a TDBS string variable or into an internal buffer (if the
record size is larger than 254 characters).

FOPEN Handle TEMP.BIN 2 1296
IF Handle< 0

? "Cannot open File"
ELSE

FBREAD Handle Nwn read
IF Nwn read= 0

IF FERROR(Handle) = 0
? "EOF Hit"

ELSE
? "Error Reading File."

ENDIF
ENDIF
Record= FBEXTRACT(Handle, 0, 128)

ENDIF

This example reads a 128 byte record from the file "TEMP .BIN" in
the homepath directory.

FOPEN
FCLOSE
FSEEK
FBWRITE
FERRORO, FBEXTRACTO, FBINSERTO,
FBMOVEQ, FBFILL()

Syntax:

Purpose:

Arguments:

Usage:

Chapter 4: TDBS Commands

II FBWRITE
11

FBWRITE < expN 1 > < memvar > [< expC/expN2 >
[<expN3> [<expN4>)]]

To write to a binary mode file.

< expNl > is the handle of the binary file (returned by the FOPEN
or FCREA TE command).

< memvar > is the variable which will receive the count of the
number of bytes actually written to the file. If < memvar > returns
zero, then a an error may have occurred. The FERR OR() function
should be used to determine the cause of the error.

< expC/expN2 > specify the output buffer as follows: If < expC >
is used, the result of evaluating the character expression is the
output buffer. If < expN2 > is used, it is the handle of an open
binary mode file which defined a buffer when it was opened. In that
case the corresponding buffer is used. Note: If < expN2 >
evaluates to a -1, then this file's own buffer is used and must have
been defined when the file was opened. This is also the default if
this field is not present on the FBWRITE command.

< expN3 > specifies the first byte of the buffer to write from. If
< expN3 > is less than or equal to 1, then the first byte of the buffer
is the first byte written. Any bytes skipped over by this parameter
are ignored by the write.

< expN4 > specifies the number of bytes to write in the range 0 to
32,767. If < expN4 > is larger than the buffer size, the extra bytes
are written as binary zero or CHR(0) bytes. If < expN4 > is less
than the buffer size, the extra bytes in the buffer are ignored and
not written to the file. Note: if < expN4 > is zero, then no data is
output to the file. However all DOS buffers are flushed to disk
assuring that all data will be on disk if any interruption (such as a
power failure) occurs.

This command writes a record to a binary mode file. Data may be
written either from a file buffer (defined by FOPEN or FCREATE)
or directly from a TDBS character string expression.

4--55

Chapter 4: TDBS Commands

Example:

See Also:

4-56

FOPEN Handle TEMP.BIN 2 128
IF Handle< 0

? "Cannot open File"
ELSE

FSEEK Handle cursize O 2 && Posto EOF
Dummy= FBINSERT(Handle, 1, "New End Rec")
FBWRITE Handle Num Write O 128
IF Num Write= 0

? "Error writing File."
ENDIF
FCLOSE Handle

ENDIF

This example appends a 128 byte record to the file "TEMP.BIN" in
the homepath directory. Note: Only the first 11 bytes of the record
are predictable, the rest of the record will have the previous con
tents of the buffer.

FOPEN
FCLOSE
FSEEK
FBREAD
FERRORQ, FBEXTRACTQ, FBINSERT(),
FBMOVEQ, FBFILL()

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

FCLOSE

FCLOSE [< expN > J
To close one or all open flat files.

<expN> is the handle of the single file to close (returned by
FOPEN or FCREA TE). If < expN > is absent, all currently open
flat files are closed.

FCLOSE closes one or all currently open flat files. Any buffers
associated with the file(s) are returned to the work pool. The status
(success or failure) of an FCLOSE maybe obtained by the FER
ROR() function. Attempts to close files which are not open are
ignored without error.

FCREATE Handle TEST.FIL 3
FCLOSE Handle

This example will create an empty file named "TEST.FIL" in the
homepath directory.

FOPEN
FCREATE
FSEEK
FLREAD
FLWRITE
FLFIND
FBREAD
FBWRITE
FERROR(), FBEXTRACT(), FBINSERT(),
FBMOVE(), FBFILL()

4-57

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Example:

4-58

II
FCREATE

FCREATE < memvar > <file> < expN1 > (< expN2 >
(<expN3>])

To create a new file for flat file access.

II

< memvar > will receive the numeric value of the handle assigned
to the newly created file. A -1 indicates a failure in the create and
the FERRORQ function will return the reason for the failure.

<file> is the name of the file (with optional drive and path) that
is to be created.

< expNl > is the mode of the create as follows:
3 = Binary Mode Read/Write Access
13 = Line Mode Read/Write Access
255 = Binary Mode "buffer only, no file"

Note: if < expNl > = 255, then no file is actually created. Rather
a buffer is allocated and a handle assigned to it as an internal
storage resource. Only FCWSE operations may be done to such
a handle, but the buff er may be used by any flat file operation and
the FBINSERTQ, FBEXTRACT() functions.

< expN2 > specifies the DOS file attributes of the file. 0 (the
default) indicates normal read/write attributes, 1 sets the read only
attribute for this file which means you cannot write in the file again
once it is closed.

< expN3 > is the size of the associated buffer in bytes. If
< expN3 > is not specified (or -1 is used) the no buffer is explicitly
associated with this file. In this case Line Mode files will assign
temp buffers as needed (with loss in performance) and a binary
mode file must "borrow" another file's buffer for read or write.

FCREATE Handle TEST.FIL 3
FCLOSE Handle

This example will create an empty file named "TEST.FIL" in the
homepath directory.

See Also:

Chapter 4: TDBS Commands

FOPEN
FCWSE
FSEEK
FI.READ
FI.WRITE
FI.FIND
FBREAD
FBWRITE
FERROR(), FBEXTRACT(), FBINSERT(),
FBMOVE(), FBFILL(), FLEN(), FMAXLEN()

4-59

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

4-60

II
FIND

II
FIND < character string>

Searches the master index for the first key which matches the
specified < character string> and positions the record pointer to
the corresponding record.

< character string> is all or part of the index key of the record you
are searching for.

FIND searches the master index starting with the first key, and
proceeds in index order until a match is found or a key is en
countered which is greater than the search < character string> . If
there is a match, the record pointer is positioned to the record
number found in the index and FOUND() will report true (.T.). If
no match is found, then the record pointer is positioned past the
end of file if SET SOFTSEEK is OFF. If SET SOFfSEEK is ON,
then when a key is not found, the record pointer will be positioned
to the next highest key in the file.

Note: If the key is a character string, FIND is affected by SET
EXACT. If the search argument has leading blanks, it must be
delimited by quote marks and have the same number of leading
blanks as the key text.

FIND 1001

This will find the first record with a key = 1001.

Farg = "Smith"
FIND &Farg

This will find the first record with a key= "Smith".

SEEK
SETEXACT
SETINDEX
SETORDER
FOUND(), EOF()

Syntax:

Purpose:

Arguments:

Usage:

Chapter 4: TDBS Commands

II
FLFIND II

FLFIND < expN 1 > < memvar > < expC > [< expN2 > J
Find the next line in a Line Mode flat file which contains the
specified target string.

< expNl > is the handle of the Line Mode (ASCII text) file
(returned by the FOPEN or FCREATE command).

< memvar > is the numeric variable which will return the position
of the first character of the target string within its line. 1 to 254 is
the column where the target begins, 0 = no match, EOF hit in file,
and -1 indicates an 1/0 error. The FERROR() function may be
used to determine the type of 1/0 error.

< expC > is a character expression which forms the search target
string. Note: Neither CHR(lO) or CHR(13) may occur in this
expression.

< expN2 > indicates the search mode. 0 is the default and indicates
that the search is case sensitive (search is faster, but upper and
lower case don't match). 1 indicates the search should ignore the
difference between upper and lower case letters.

FLFIND will search an open Line Mode flat file from its current
position to the EOF for a match with the target text string. If
< memvar > returns a non-zero value (indicating a match) the file
is positioned to the START OF THE LINE that contains the string.
Thus the next FLREAD issued will read the line which contains the
matching text string, and < memvar > indicates the character
within the line where the match begins.

Since the file is positioned to the beginning of the line with the
match, an FLREAD must be done prior to a repeated FLFIND in
order to avoid finding the same string over and over. Once an
FLREAD is issued, a repeat of the FLFIND will search for any
other match following this line of the file.

4-61

Chapter 4: TDBS Commands

Example:

See Also:

Note: If the line is longer than 254 characters, then the file is
positioned so that the matching string will be at the end of a 254
byte line fragment.

Note: If SET ESCAPE ON is in effect, the user may abort an
FLFIND by pressing the < Esc > key. In this case the FLFIND
will immediately terminate with a "not found" condition and then
the escape is processed normally.

FOPEN Handle CHAPTERl.TXT 10 2048
FLFIND Handle Location "Abraham Lincoln"
IF Location> 0

FLREAD Handle size Record
? Record

ELSE
? "No match found"

ENDIF
FCLOSE Handle

This example locates the first line in the text file "CHAP
TERl.TXT" which contains the text "Abraham Lincoln". The
search is case sensitive (i.e. upper and lower case must match). The
line is then read into the string "Record" and the variable "Location"
contains the offset within the string of the first character of the
matched text.

FOPEN
FCREATE
FCWSE
FSEEK
FLREAD
FLWRITE
FERRORQ, CRTRIMQ

Syntax:

Purpose:

Arguments:

Usage:

Example:

Chapter 4: TDBS Commands

FLREAD

FLREAD < expN > < memvar1 > < memvar2 >

To read a line from a Line Mode (ASCII text) flat file.

< expNl > is the handle of the Line Mode (ASCII text) file
(returned by the FOPEN or FCREATE command).

< memvarl > receives the numeric count of the number of bytes
actually read. 0 indicates either EOF hit or an 1/0 error. The
FERRO RO function may be used to determine the error type.

< memvar2 > becomes a character string which is the next line of
the file. The string placed in this variable contains the end of line
sequence (the CRTRIM() function many be used to remove the
end of line sequence). If the line is greater than 254 characters,
only the first 254 characters are placed in this variable and the
remainder of the line will be read with the next FLREAD.

Note: If the memvars do not exist, they are created as private to the
current program level the same as x = "abc" would do.

The FLREAD command allows an ASCII text file (open in Line
Mode) to be read one line at a time.

FOPEN Handle CHAPTERl.TXT 10 2048
DO WHILE .T.

FLREAD Handle size Record
IF size> O

? CRTRIM(Record)
ELSE

EXIT
ENDIF

ENDDO
FCLOSE Handle

This example displays the file "CHAYfERl.TXT" to the user's
screen one line at a time.

4-63

Chapter 4: TDBS Commands

See Also: FOPEN
FCREATE
FCWSE
FSEEK
FLFIND
Fl.WRITE
FERROR(), CRTRIM()

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II FLWRITE
11

FL WRITE < expN > < memvar > < expC >

To write a line to a Line Mode (ASCil text) flat file.

< expNl > is the handle of the Line Mode (ASCII text) file
(returned by the FOPEN or FCREA TE command).

< memvar > is the variable which will receive the count of the
number of bytes actually written to the file. 0 bytes written indicates
an error and the FERROR() function may be used to determine
the type of error which occurred.

< expC > is the character expression which is to be written to the
file beginning at the current file position. The entire contents of
the expression are written to the file. Note: The END-OF-LINE
sequence MUST be part of this string! If < expC > is zero length,
then no data is output to the file. However all DOS buffers are
flushed to disk assuring that all data will be on disk if any interrup
tion (such as a power failure) occurs.

FL WRITE outputs a specified character string to a Line Mode
(ASCil text) flat file.

FCREATE Handle TEST.TXT 13 2048
RecNum = 1
DO WHILE RecNum <= 20

Record= STR(RecNum)+CHR(l3)+CHR(l0)
FLWRITE Handle size Record
IF size< 1

EXIT && Get out if write error
ENDIF
RecNum = RecNum + 1

ENDDO

This example writes a file with 20 records each of which contains
the ASCII number of the record.

FOPEN, FCREATE, FCLOSE, FSEEK, FLFIND, FLWRITE
FERROR(), CRTRIM()

4-65

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

4-66

II FOPEN

FOP EN < memvar > <file> < expN 1 > [< expN2 > J
To open a DOS file for flat file 1/0.

11

< memvar > will receive the numeric value of the handle assigned
to the opened file. A -1 indicates a failure in the open and the
FERRORO function will return the reason for the failure.

<file> is the name of the file (with optional drive and path) that
is to be opened.

< expNl > is the mode and type of open as follows:
0 = Binary Mode, Read Only
1 = Binary Mode, Write Only, Append
2 = Binary Mode, Read/Write
3 = Binary Mode, Read/Write, Append
10 = Line Mode, Read Only
11 = Line Mode, Write Only, Append
12 = Line Mode, Read/Write
13 = Line Mode, Read/Write, Append

Note: If < expNl > = 13 (Line Mode, Read/Write, Append)
the append will locate a logical EOF mark ("Z character) and
append prior to it if the mark exists within the last 512 bytes of
the file. If no "Z exists, the append uses the DOS EOF value.
However, < expNl > = 11 can only use the DOS EOF value to
append, since it isn't allowed read access to locate any possible
logical EOF mark.

< expN2 > specifies the size (in bytes) of an internal buffer to be
allocated from the work pool and associated with this file until it is
closed. If < expN2 > is not specified (or -1 is used) no buffer is
associated with this file. If no buffer is specified for Line Mode files
TDBS will use temporary internal buffers (at some loss of perfor
mance). For Binary Mode files you must "borrow" another file's
buffer to do reads or writes to the file if you don't specify a buffer
on the open.

Examples:

See Also:

Chapter 4: TDBS Commands

FOPEN Handle CONFIG.CTL O 512

Open the file "CONFIG.CTL" in binary mode, read only, and set a
512 byte buffer. The file handle is placed in the variable "Handle".

ACCEPT "Enter File Name: "TO Fname
FOPEN Handle2 &Fname 12 2048

Open the file entered by the user in Line Mode, Read/Write access,
and assign a 2048 byte internal buffer for better performance during
file operations.

FCREATE
FCLOSE
FSEEK
FLREAD
FLWRITE
FLFIND
FBREAD
FBWRITE
FERRORQ, FBEXTRACTQ, FBINSERTQ,
FBMOVEQ, FBFILL(), CRTRIM(), FLEN(), FMAXLENQ

4-67

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Example:

4-68

FSEEK

FSEEK < expN1 > < memvar> < expN2 > [< expN3 >]

Position a flat file (either binary or text mode).

< expNl > is the handle of the flat file to position (returned by the
FOPEN or FCREATE command).

< memvar > is the numeric variable which will receive the position
of the file (as bytes after BOF) after the file has been positioned.

< expN2 > is the signed numeric value which indicates the number
of bytes to move the file (neg = backwards, pos = forward, 0 =
set to BOF, Current Position, or EOF (based on < expN3 >).

< expN3 > is a numeric value specifying the type of positioning
to do as follows:

0 = Position relative to BOF
1 = Position relative to current location (default)
2 = Position relative to EOF
10 = Position relative to BOF and SET AS NEW EOF
11 = Position relative to current location and SET AS

NEWEOF
12 = Position relative to EOF and SET AS NEW EOF.

FSEEK allows you to position a flat file to any byte position within
it. It also allows you to determine the current byte position of the
file, or to set a new DOS EOF value.

FSEEK Handle curPos 0

CurPos = Current Position of the file.

FSEEK Handle NewPos 2048 0

Position the file to byte 2048 from the beginning of the file.

See Also:

Chapter 4: TDBS Commands

FSEEK Handle NewPos -128 1

Position the file 128 bytes in front of its current position.

FSEEK Handle curPos O 11

Set the current file position as the new DOS EOF.

FCREATE
FOPEN
FCLOSE
FLREAD
FLWRITE
FLFIND
FBREAD
FBWRITE
FERROR0, FBEXTRACTO, FBINSERT(),
FBMOVE(), FBFILL(), CRTRIM()

4-69

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

See Also:

4-70

II
GO/GOTO

11

GO/GOTO < expN > /BOTTOM/TOP

Moves the record pointer to a specific record in the database file
open in the current work area.

< expN > is the specific record number to move the record pointer
to. GOTO moves the record pointer to this record, even if
DELETED is on, or it falls outside the scope of the current SET
FILTER TO conditions. In other words, even if it would normally
be hidden, GOTO will access it. The number is always the physical
record number in the file and is not affected by an index file.

BOTIOM: GO/GOTO BOTTOM moves to the last logical record
in the current work area.

TOP: GO/GOTO TOP moves to the first logical record in the
current work area.

Note: if there is an index, then it controls the first or last logical
record for TOP or BOTTOM. Also, TOP and BOTTOM will skip
records which are deleted if SET DELETE ON is active.

SKIP
SET DELETED
RECCOUNT(), RECNO()

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II HALT
11

HALT < exp list>

Aborts a program with an optional error message.

< exp list > is a list of expressions which are displayed identically
to the ? command.

This command will close all open files and print the error message.
Then it will print "Press Any Key" and when any key is pressed by
the user will return to the TBBS calling menu.

HALT MESSAGE ()

QUIT
?/??

4-71

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

4-72

II
IF <condition>

<commands>
[ELSE

<commands>)
ENDIF

IF
11

Execute or skip a group of commands based upon one or more
conditions.

< condition> is the control expression.

If the control expression evaluates to true (.T.) then the commands
following the IF and up to either the ELSE (if present) or END IF
(if ELSE not present) are executed. If the control expression
evaluates false (.F.) then the commands after the IF are skipped,
and if an ELSE is specified, then the commands between the ELSE
and the ENDIF are executed.

IF structures may be nested within other IF structures up to 255
levels deep.

number= 0
INPUT "Enter test number" TO number
IF number< 50

? "Less than 50"
ELSE

IF number= 50
? "Equal to 50"

ELSE
? "Greater than 50"

ENDIF
ENDIF

This example shows the nesting of IF structures.

DO CASE
IIF()

Syntax:

Purpose:

Arguments:

Usage:

Chapter 4: TDBS Commands

II
INDEX ON

II
INDEX ON < key exp> TO <file>

Creates a file which contains an index to the records in the current
work area's database file.

< key exp > is an expression which returns the key value to place
in the index for each record in the current database file. The
maximum length of the key expression is 200 characters.

< file > is the name of the index file to create. The file extension
is normally .NDX, but can be made anything you wish.

When an index file is used, the database records appear in key
expression order although the index does not alter the physical
order of the records in the database file. This allows you to create
and maintain many different logical orders of records automat
ically.

Records which are marked for deletion, or filtered out (by a SET
FILTER TO command) are still included in the index.

Character Date indexes are supported through the use of the
DTOS() functions. Descending indexes are supported through the
use of the DESCEND() function. Note: If you use the DES
CENDQ function to create descending indexes, you must also use
it on the SEEK command.

Unique Indexes: If SET UNIQUE ON is active when the INDEX
ON command is executed, the index created will have uniqueness
as an attribute. As indexing proceeds, if two or more records have
the same key expression value, only the first record will be included
in the index. Whenever the unique index is updated via
REPLACE, APPEND, etc. commands only unique records are
indexed. Note that uniqueness becomes an attribute of the file after
the INDEX ON command, and is unaffected by subsequent settings
of SET UNIQUE.

4-73

Chapter 4: TDBS Commands

Examples:

See Also:

4-74

? TYPE("Branch") && Result: C
INDEX ON Branch TO Branch

? TYPE("Amount") && Result: N
INDEX ON Amount TO Amount

? TYPE("Date") && Result: D
INDEX ON Date TO Date

USE INVOICES
INDEX ON Customers+DTOS(Inv_Date) TO Invoice

USE INVOICES
INDEX ON DESCEND(Inv_date) TO Inv stack

CWSE
FIND
SEEK
SET INDEX TO
SET ORDER TO
SETUNIQUE
USE
DTOS()
INDEXKEY()
INDEXORD()

Syntax:

Purpose:

Arguments:

Options:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

INPUT

INPUT [<prompt>) TO < memvar >

Allows a number to be input from the keyboard into a memory
variable.

< memvar > is the name of the memory variable where the numeric
input will be placed.

Prompt: If the optional < prompt> character expression is given
it is displayed to the screen before the numeric input is accepted.

INPUT cannot create a memory variable. The variable must be
defined before the INPUT command is executed.

Val= 0
INPUT "Enter Number" TO Val
? Val && Result: Number input is displayed

ACCEPT
WAIT

4-75

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Options:

Usage:

Example:

See Also:

4-76

II LOCATE
11

LOCATE [<scope>) FOR <condition>
(WHILE < condition >)

Searches for first record in the current work area's database file
which matches the specified condition.

The FOR <condition> specifies the record to locate within the
given scope.

Scope: The < scope > option limits the portion of the file which the
locate will search. The default is ALL.

WHILE: The WHILE option limits the range of the LOCATE
command to those consecutive records for which the WHILE
< condition> evaluates as true (.T.).

WCATE begins its search with the first record of the <scope>
(or the first record of the file if no <scope> is given). If a matching
record is located, the record pointer is positioned to it and
FOUND() reports true (.T.). If no match is found, then the record
pointer points past the end of the < scope> specified and the
FOUND () reports false (.F.).

Subsequent searches on the same criteria are done using the CON
TINUE command.

USE Orders
LOCATE FOR Customer= "45198"
? FOUND() , RECNO () &Results: • T. 1 7

CONTINUE
FOUND()
FIND
SEEK

Syntax:

Purpose:

Argument:

Usage:

Example:

Chapter 4: TDBS Commands

II
NOTE [<text>
* [<text>]

NOTE/*/&&

*@ [<command> J
[<command> J && [<text> J

Allows comments in program and after command lines.

< text> is any string of characters used for commentary.

11

NOTE or * must be the first non-blank portion of a line. The
remainder of the line is commentary. The && can occur anywhere
on any line and ends any active command portion. The remainder
of the line is treated as commentary.

The *@ is a special form of the * command which may be used to
allow TDBS extended code to be considered commentary by other
dBASE language dialects. Such a line is normally treated as com
mentary by the TDBS compiler unless the /XC switch is used on the
compiler command line. In this case, the remainder of the line
following the *@ is treated as a normal command line.

NOTE this is a comment line
* This is also a comment line
SET CONFIRM ON && This portion is comment

•@ SET UPDATE BELL ROLLBACK && Cmd if /XC

4-77

Chapter 4: TDBS Commands

Syntax:

Purpose:

Option:

Usage:

4-78

II
ON DISCONNECT

II
ON DISCONNECT [<command> J
Allows program control when a user accidentally disconnects via
loss of carrier signal or operator abort.

<command> is a single TDBS command which is executed in
response to a disconnect from loss of carrier or operator abort.
Normally this is a DO command (error procedure), but any com
mand except another ON command or a structure command is
allowed. If no <command> is present, any current ON DISCON
NECT command is disarmed.

The ON DISCONNECT command allows a program to provide its
own "cleanup" procedure to be executed if the program is prema
turely aborted due to a user disconnect or operator shutdown.
Following are the considerations for an ON DISCONNECT pro
cedure:

The ON DISCONNECT takes effect between instructions, unless
the current instruction is a multi-record instruction (e.g. APPEND
FROM etc.). In that case the instruction is aborted at the end of
the current record. If the instruction under execution at the time
of the disconnect was a screen output or keyboard input instruction
it is aborted and the ON DISCONNECT routine is entered.

The ON DISCONNECT routine ends when a QUIT, CANCEL,
HALT, RETURN TO MASTER, or a RETURN at the level of the
ON DISCONNECT procedure. It will also end if any error occurs
during ON DISCONNECT processing or if the maximum allowed
number of instructions specified by the SET DISCONNECT com
mand is exceeded. At the end of the ON DISCONNECT routine
the internal TDBS cleanup routine closes all files and work areas
which may be left open and releases any resources still held by the
program.

Once the ON DISCONNECT has been entered, all other exception
routines (ON ERROR, ON ESCAPE, ON KEY) are inhibited for
the remainder of the program's execution. Any new ON commands
executed inside the ON DISCONNECT routine are ignored.

Example:

See Also:

Chapter 4: TDBS Commands

Any subsequent attempt to send output to the user's terminal is
discarded, but any output routed to an AL TERNA TE file or
printer will be processed. (This allows an AL TERNA TE file to
record any errors which may occur during an ON DISCONNECT
procedure).

Any attempt to read input from the user's keyboard will result in
an immediate end of the ON DISCONNECT routine with a special
error code [1215] "No keyboard reads allowed during ON DIS
CONNECT".

Since the ON DISCONNECT sequence never returns to the main
program, any pending ON ERROR, ON ESCAPE, or ON KEY
procedures are disarmed and ignored. If the ON DISCONNECT
occurred during processing an ON ERROR procedure, the
ERRORO function will continue to return the ORIGINAL error
code. Normally ERROR() in an ON DISCONNECT routine will
return the special error code [1210) "ON DISCONNECT trig
gered". This may be used if desired to see if an ERROR handler
was partially complete and needs further cleanup.

The following is an example of an ON DISCONNECT procedure
which assures that a database field accurately reflects the logon or
logoff state of a user.

SELECT 3
USE status
ON DISCONNECT DO Hangup
REPLACE Logged WITH .T.

REPLACE C->Logged WITH .F.
QUIT

PROCEDURE Hangup
REPLACE C->Logged WITH .F.
RETURN

SET DISCONNECT
ERROR()

&& Show logged

&& show OFF

&& Show OFF

4-79

Chapter 4: TDBS Commands

Syntax:

Purpose:

Option:

Usage:

4-80

II
ON ERROR

11

ON ERROR [<command>]

Allows program control over most error conditions.

<command> is a single TDBS command which is executed in
response to an error condition. Normally this is a DO command
(error procedure), but any command except another ON command
or a structure command is allowed. If no <command> is present,
any current ON ERROR command is disarmed.

The ON ERROR command responds to most errors by performing
the <command> . Normally this is a DO command which invokes
an ON ERROR handling procedure. Once an ON ERROR hand
ler is armed by executing an ON ERROR with a command present,
any fieldable error will invoke the ON ERROR command. Entry
to the ON ERROR command disarms the ON ERROR handler
until either a RETURN (or RETRY) to the original program level
or another ON ERROR is issued. This means that if another error
occurs within the ON ERROR handler, this error will not re-enter
the handler but will abort the program. Note: If only a single
instruction is given in the ON ERROR command, an implied
RETURN to the program level occurs after that instruction.

Within an ON ERROR handler, the two functions ERROR() and
MESSAGE() allow access to the error code and message text to
allow conditional error handling.

The RETRY command when issued from an ON ERROR handler
will re-execute the instruction which caused the error to occur.
This instruction is restarted from its beginning, not resumed in the
middle at the point where the error occurred. Thus if there are any
"side effects" from functions evaluated in the instruction, these
functions will be evaluated again from the beginning of the instruc
tion.

The RETURN command when issued from an ON ERROR hand
ler will return to the instruction FOLLOWING the one which
caused the error to occur.

Multiuser:

Examples:

Chapter 4: TDBS Commands

ON ERROR can be used to field explicit file locking errors in two
cases. First, it is used to do retries when your program wishes to
open files for exclusive access and needs to wait for another pro
gram to close the file. Secondly, it can be used if your program is
written to use the Transparent File Sharing feature of TDBS but
wants to be able to share files with another program which may be
written using explicit file locking.

The following is an example of a program which will wait for access
to a file and notify the user with a message in the upper right hand
corner of the screen if a wait is necessary.

Msgout = 0
ON ERROR DO Filewait
USE File EXCLUSIVE

&& Arm the handler

ON ERROR
IF Msgout <> 0

@ 0,57
ENDIF

PROCEDURE Filewait

&& Disarm the handler

&& clear "Waiting" msg

IF ERROR()= 108 && File in use by another?
IF Msgout = O

@ 0,57 SAY "Waiting for file access"
Msgout=l

ENDIF
A=INKEY(l) && delay 1 second
RETRY

ENDIF
&& try to open file again

HALT MESSAGE () && Abort other error

The following is an example of a routine which allows a user to
rename a file, but which fields the error if name he chooses is in use
and allows him to re-enter a new name.

ACCEPT "Enter new name for file" TO NewName
IF .NOT. "•" $ NewName

NewName = NewName + ".dbf"
ENDIF
ON ERROR DO FileErr && Arm Error Handler
RENAME ThisFile.dbf TO &NewName
ON ERROR && Disarm Error Handler

4-81

Chapter 4: TDBS Commands

See Also:

4-82

**
* FileErr handler: Illegal file name

*
IF ERROR()= 7

? "File name already existsl"
ACCEPT "Enter new name for file" TO NewName
RETRY && Try again with new name

ENDIF
RETURN && Ignore other errors

Here is an example of an error routine which could be used in a
program which normally uses Transparent File Sharing, but wants
to allow other programs to do explicit record locking on shared
files.

ON ERROR DO Conflict

PROCEDURE Conflict
IF ERROR()= 109

A=INKEY(l)
RETRY

ENDIF
HALT MESSAGE ()

RETRY
RETURN

&& Arm Error Handler

&& Record in use?
&& Delay 1 second
&& yes, retry access

&& Abort other error

ERROR(), MESSAGE(), INKEY()

Syntax:

Purpose:

Options:

Usage:

See Also:

Chapter 4: TDBS Commands

II
ON ESCAPE

II
ON ESCAPE [<command>)

Allows a program to take "hot key" action if the user presses the
<esc> key.

<command> is a single TDBS command which is executed in
response to an < esc > key. Normally this is a DO command
(escape procedure), but any command except another ON com
mand or a structure command is allowed. If no <command> is
present, any current ON ESCAPE command is disarmed.

The ON ESCAPE command responds only to the < esc > key, and
only if the SET ESCAPE ON command is also in effect. ON
ESCAPE is executed "between" commands. That is, each com
mand instruction completes fully before the SET ESCAPE routine
is entered. The RETURN command from a SET ESCAPE routine
will continue program execution with the next instruction which
would have been executed if the < esc > key had not been pressed.
ON ESCAPE is activated whenever an < esc > is placed INTO the
typeahead buffer. If both ON KEY and ON ESCAPE are set, only
the ON ESCAPE command will respond to the < esc > key.

Once an ON ESCAPE routine has been entered, another < esc >
key will not cause it to interrupt itself. This status is cleared when
the program returns to the level which was interrupted by the
< esc > key at which time the ON ESCAPE routine will again field
< esc > key presses.

SET ESCAPE ON/OFF
ONKEY
RETURN

4-83

Chapter 4: TOSS Commands

Syntax:

Purpose:

Options:

Usage:

See Also:

4-84

II ON KEV II
ON KEY [<command>]

Allows a program to respond to input between commands.

<command> is a single TDBS command which is executed in
response to a key waiting condition. Normally this is a DO com
mand (hot key procedure), but any command except another ON
command or a structure command is allowed. If no <command>
is present, any current ON KEY command is disarmed.

ON KEY checks for a keystroke waiting in the typeahead buffer
between each command in a TDBS program. If a key has been
pressed, then the ON KEY command is executed. The key which
triggered the ON KEY command stays in the input buffer until it is
explicitly read by an input command.

If an ON ESCAPE command is active, then the < esc > key will
not trigger the ON KEY command. If no ON ESCAPE command
is active, then the < esc > will trigger the ON KEY command and
can be read as a normal character.

The INKEY() function may be used to read the key and prevent
repeated entry to the ON KEY routine. When the ON KEY routine
is entered, another key will not interrupt it. If no ON KEY com
mand is issued in the ON KEY routine to disarm the ON KEY
function, then it will be automatically rearmed when the program
returns to the level which was interrupted by the key.

ONESCAPE
SET TYPEAHEAD
CLEAR TYPEAHEAD
INKEY()

Syntax:

Purpose:

Options:

Usage:

Chapter 4: TDBS Commands

II
ON NEWMAIL

11

ON NEWMAIL [<command>]

Allows a program to take immediate action if any open mailbox is
updated by another user.

<command> is a single TDBS command which is executed in
response to another user has updated a field in one or more open
mailbox files. Normally this is a DO command (newmail proce
dure), but any command except another ON command or a struc
ture command is allowed. If no <command> is present, any
current ON NEWMAIL command is disarmed.

The ON NEWMAIL command responds to the setting of the
program's NEWMAIL flag. This flag is set whenever data is stored
into any open mailbox field by another user, and remains set until
a NEWMAIL{) or W AIT4MAIL{) function is executed.

If an ON NEWMAIL procedure is enabled by the ON NEWMAIL
command, then it is entered at the end of the next instruction after
mail is received. An ON NEWMAIL procedure exits with a
RETURN.

Once the ON NEWMAIL procedure has been entered, ON ES
CAPE and ON KEY routines are inhibited until ON NEWMAIL
exits.

When the ON NEWMAIL routine is entered the status of each
active mailbox should be polled with the NEWMAIL() function.
If additional new mail arrives during the ON NEWMAIL proce
dure execution, it is noted for subsequent detection when the ON
NEWMAIL procedure is exited, but ON NEWMAIL will not
interrupt itself. If any received mail exists for a work area which
the ON NEWMAIL procedure did not issue a NEWMAIL()
function, the ON NEWMAIL procedure will be immediately re
entered when it exits. This effect can be minimired by looping
checking each active mailbox with the NEWMAIL() function
before exiting.

4-85

Chapter 4: TDBS Commands

Example:

See Also:

4-86

The following allows a mailbox to be used to notify a current user
if a message has been sent to him.

ON NEWMAIL DO InMail
SELECT 10
USE MailFile MAILBOX

A=0
DO WHILE A=0

A=INKEY(1)
ENDDO

PROCEDURE InMail
IF 10->MailFor = UNAME() .and. NEWMAIL(l0)

@ 23,1 SAY "Mail For You Waiting"
ENDIF
RETURN

USE ... MAILBOX
NEWMAIL(), WAIT4MAIL()

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II PARAMETERS
11

PARAMETERS < memvar list>

Identifies memory variables which receive the parameters passed
by the DO WITH command.

< memvar list > is one or more receiving variables separated by
commas. The number of variables in this list must match the
number of parameters on the calling DO WITH command.

Normally parameters are passed by value. That is, a new private
version of the variable specified on the PARAMETER command
is created, and the value of the corresponding expression on the
DO WITH command is copied into this private variable. In this
case, no original variables can be changed by the called procedure,
and any memory used by the receiving variable is released when this
procedure returns to its caller.

However, if the DO WITH parameter is a simple memory variable
name or unsubscripted array name then the variable is passed by
reference. That is, the called program is given access to the original
variable directly (via the receiving variable name) and may modify
it and return a value in it. Note: FIELDs are always passed by value.

STORE 1 TO varl,var2,var3
DO Pree WITH varl,var2+var3,"string"
? varl, var2, var3 && Result: 3 1 1

PROCEDURE Pree
PARAMETERS varl,var2,var3
? varl, var2, var3
STORE 3 TO varl, var2,
? varl, var2,
RETURN

DO
PROCEDURE
PRIVATE
PUBLIC

var3

&& Result:
var3

&& Result:

1 2 string

3 3 3

4-87

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

4-88

PRIVATE

PRIVATE [ALL[UKE/EXCEPT <skeleton>]]
I< memvar list>/< array list>

Creates a new instance of one or more memory variables or memory
variable arrays at the current program level.

< memvar list> is a list of variables to declare private.

Optionally ALL, ALL LIKE <skeleton>, or ALL EXCEPT
< skeleton > may be used to create new instances of any existing
variables which match (or fail to match) the skeleton.

When a memory variable is declared PRIVATE in a procedure,
and existing definition of the same name, whether PUBLIC or
PRIVATE, is hidden until the current procedure RETURNs. The
domain of the new variable is the current procedure and all lower
level procedures. When the current procedure RETURNs, all
private variables it created are released and any previous defini
tions again become accessible. This process may be nested to any
depth.

Note that PRIVATE, unlike PUBLIC, assigns no initial value to
the created variable. Instead the variable is undefined until a value
is explicitly assigned to it.

Arrays: PRIVATE may be used in place of DECLARE to defme
or redefme private domain arrays. Note that array defmitions may
not be mixed with ALL LIKE or ALL EXCEPT skeletons.

PRIVATE ALL LIKE C*
PRIVATE varl, var2, arrayl[lOJ, array2[20J

DECLARE
PUBLIC
Memory Variable Domains (Chapter 2)

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II PROCEDURE

PROCEDURE <procedure>
<commands>

[RETURN)

Identifies the beginning of a procedure.

II

<procedure> is the name of the procedure. The name may be up
to 8 characters in length, and must begin with an alphabetic char
acter. Each name must be unique from all other procedures,
programs, and format (.FMT) file names in application.

A PROCEDURE is any executable block of code. It begins with
the PROCEDURE command and includes all code up to another
PROCEDURE command or the end of the file. TDBS allows
PROCEDURES to occur anywhere in any file, but they may not be
nested within other procedures.

A procedure is called with the DO command, and exits back to the
calling program by using the RETURN command.

* Main Program
DO Procl
DO Proc2
QUIT

PROCEDURE Procl
? "Proc one?
RETURN

PROCEDURE Proc2
? "Proc Two"
RETURN

Results: ProcOne
ProcTwo

DO,RETURN
SET PROCEDURE TO

4-89

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

4-90

II PUBLIC
11

PUBLIC < memvar list>/< array list>

Declares memory variables and.or memory variable arrays as
global, making them available to all procedures within a program.

< memvar list > is the list of memory variables to declare as
PUBLIC variables.

A memory variable may not exist when it is declared PUBLIC, or
an error will occur. Declaring a variable PUBLIC creates a new
variable with a type of logical, and an initial value of false (.F.).
Once assigned this value, the variable has a domain of global
meaning that all procedures may access it. While you cannot
declare an existing variable PUBLIC, you can declare a PUBLIC
variable to be PRIVATE which will temporarily hide it from other
procedures.

Arrays: Declaring a PUBLIC array creates the array with the
specified number of elements. Note that PUBLIC array elements
are not defined until they are assigned a value.

PUBLIC TDBS: To include TDBS extensions in a program, and
still allow the program to run properly under other dBASE lan
guage dialects, the special memory variable "TD BS" is initialized to
true (.T.) when declared PUBLIC. Thus you may use the variable
TDBS as the argument of IF ... ENDIF structures to hide TDBS
specific code from other dBASE language dialects.

PUBLIC TDBS, varl, arrayl[lO], array2[10_]

DECLARE
PRIVATE
PARAMETERS
Memory Variable Domains (Chapter 2)

Syntax:

Purpose:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

I QUIT

QUIT

Terminates program processing, closes all open files, and returns
to the calling TBBS menu.

QUIT may be used from anywhere in the program to terminate and
return to the TBBS menu. Any open files will be closed, and all
updates are cleanly written to disk.

IF Answer$ "Nn"
QUIT

ENDIF

This example will terminate a program from any level if the variable
ANSWER contains either an upper or lower case N.

HALT

4-91

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

4-92

II
READ

11

READ [SAVE] [FKEY] [SELECT <field>]

Allows full screen editing using either the pending GETs or a
screen format (.FMT) file procedure.

SA VE: The SA VE option retains the current set of pending GETs,
allowing you to edit the same GETs by issuing another READ. If
SA VE is not specified, the current GETs are released at the end of
the READ command.

FKEY: The FKEY option causes the READ to terminate if the
function keys F2 through Fl0 are pressed and no text is defined for
them via the SET FUNCTION TO command. Following the
READ the LASTKEYO function may be used to determine which
function key ended the read, and the READ KEY() command may
be used to tell if any fields were updated.

SELECT <field>: The SELECT option positions the cursor ini
tially to the named field. If this field is a memo field, the memo
editor is entered instantly. If a memo field is selected in this way,
the READ will ignore all other GETS and when the memo editor
is exited by the user, the READ will terminate. In this special case
the READ KEY() function may be used to determine if the memo
field was updated. READKEY() will return 14 if no changes were
made, and T70 if the memo field was updated.

Note: The GET for a memo field must occur in a format file (as
for any memo editing operation) for the automatic memo editor
entry to operate correctly.

READ executes full screen editing using all GETs which have been
issued since the last CLEAR, CLEAR GETS, CLEAR ALL, or
READ (without the SA VE option) command.

If there is an active SET FORMAT file, then READ will call that
file as a procedure before entering a full screen edit. If there are
any READ commands in the format file, they are executed normal
ly, and this READ command will operate on any GETs which are
pending when the format procedure returns. Note: This is a TDBS

Chapter 4: TDBS Commands

extension to the dBASE language, which only allows @ commands
in a format file.

Within a READ, the user can edit the contents of, and navigate
between any pending GET field. Whenever a key is pressed which
terminates a GET, the editing session is completed. The format of
data which may be entered in each field is determined by the GET
command and its associated PICTURE template and functions (if
any).

Communications: Because TDBS uses serial communications ports to connect to
terminals, it allows some VT-100, VT-52, and ANSI function key
sequences as input. These key sequences are only recognized if
they are sent at full speed, so they cannot be sent manually. If there
is more than lOOms delay between the characters in a sequence,
they will be treated as separate characters and not as a function
sequence. The following table lists the VT/ ANSI multi-key sequen
ces along with the standard single key code. A program which is
looking for explicit keys will only see the single key code, since
TDBS maps the VT/ANSI keys to their single key value before
passing them to the program. This is also true for all INKEY,
LASTKEY, and NEXTKEY functions.

TDBS 1.2 also maps IBM PC scan code emulation (sometimes
called "doorway mode") function keys. Remote keyboards which
operate in this mode will allow all function keys to behave as would
be expected on a local IBM PC keyboard (and as shown in the KEY
column in the following table).

The following table lists the keys which perform the full screen
editing functions in TDBS when in a READ command.

4-93

Chapter 4: TDBS Commands

4-94

Ctrl Inkey Vf/ANSI
KEY Key Value Sequences Effect on Eiting

UpArrow AE 5 EscA or Esc[A Previous Field

DownArrow Ax 24 EscB or Esc[B Next Field

Return AM 13 Next Field

Left Arrow Ast 19 EscD or Esc[D Character Left :j:

Right Arrow AD 4 EscC or Esc[C Character Right :j:

ALeftArrow AA 1 Esc[H WordLeft:j:

A Right Arrow AF 6 Esc[K WordRight:j:

Backspace AH 8 Destructive Backspace :j:

Del AG 7 Delete char at cursor

" Backspace AT 20 Delete word right

Ay 25 Delete to end of Field

Ins "V 22 Toggle Insert Mode.

"END Aw 23 Exit Read (save changes)

Page Up AR 18 Exit Read (save changes)

Page Down Ac 3 Exit Read (save changes)

Esc "[27 Exit Read (discard any
changes to fields, save
changes to memvars)

t Since "S is used for flow control (XOFF/XON) it cannot be directly input.
Therefore TDBS will convert AO internally to AS to allow a single key input
for cursor left.

:j: If the cursor is already at the "edge" of the field, these keys can advance to the
previous or next field (depending on their direction).

Since TDBS does not implement a status line or scoreboard line on
a full screen read, the Insert function is reset on exit from a field.
Thus the Ins key must be pressed to put the edit mode back to insert
when each new field is entered.

Multiuser:

See Also:

Chapter 4: TDBS Commands

In TDBS, the READ function activates the Transparent Screen
Update and Rollback on Collision feature if any of the pending
GETs refer to fields in a shared file. With this feature, a record
lock is never necessary. In addition, if another user updates any
field which is part of your READ operation in progress, that update
will be immediately displayed on your screen. If you have edited
the field which was changed, your edit is rolled back (since the file
data was updated). You have the option of being alerted with a
bell if any displayed field is changed by another user, or only if such
a change rolls back a field you edited, but have not yet committed.
None of your changes are committed to the shared file until you exit
the READ with either a Page Up, Page Down, or Ctrl-End key.

@ •.. GET
CLEAR
CLEAR GETS
SET FORMAT TO
SET UPDATE BELL
LASTKEY(), READKEY()

4-95

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

Example:

Multiuser:

See Also:

4-96

II
RECALL

RECALL [<scope>] [FOR <condition>]
[WHILE <condition>]

Reinstates records which were marked for deleted.

II

Scope: The <scope> limits the records in the file to RECALL. If
no scope is specified, the default is the current record if no condi
tion is specified. If a condition is specified, then the default scope
is ALL ..

Condition: The FOR option specifies the conditional set of records
to RECALL within the given scope. The WHILE option limits the
RECALL to the set of records from the current record to the first
record which fails to meet the < condition > .

If SET DELETED is ON, RECALL only reinstates the current
record or a specific record if you specify the RECORD scope. In
other words, RECALL cannot find deleted records, other than a
specific single record, if SET DELETED is ON. Therefore it is
usually best to SET DELETED OFF before doing a RECALL.

USE File
GOTO 5
DELETE
? DELETED() && Results: .T •
RECALL
? DELETED() && Results: . F.

If the file is being shared, no record locking is required. The
RECALL is immediately made known to all users of the file
transparently by TDBS.

DELETE
SET DELETED
DELETED()

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II
RELEASE

11

RELEASE < memvar list>
/[ALL[LIKE/EXCEPT <skeleton>)]

Deletes memory variables.

< memvar list > is a list of memory variables to delete.
<skeleton> is a wildcard mask specifying a group of memory
variables to delete (or exclude from deletion).

The effect of the RELEASE command differs depending upon
whether the ALL option (with or without a <skeleton>) is used.
Ifit is, then only PRIVATE memory variables created at the current
procedure level are deleted. If the < memvar list > is used instead,
then the most recent instance of each specified memory variable is
deleted, even if the variable is PUBLIC or was created by a higher
level procedure.

Note: RELEASEing the local (or most recent instance) of a vari
able does NOT cause previous hidden instances to become acces
sible. That still occurs only on the RETURN from the procedure
level which created the instance of the variable which was released.
It does, however, return the memory used by the variable to the
memory variable pool immediately.

PUBLIC varl
varl = "l"
DO Proc
? TYPE("varl")

PROCEDURE Proc
PRIVATE varl
one= "2"
? TYPE ("varl")
RELEASE varl
? TYPE ("varl")
RETURN

&& Result: c

&& Result: c

&& Result: u

CLEAR ALL, CLEAR MEMORY, PRIVATE, PUBLIC

4-97

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

4-98

II
RENAME

RENAME [<path>] <file>.<ext> TO <file2>.<ext>

Renames a file to a new name.

< file > . < ext> is the name of a file to rename.

< file2 > . < ext2 > is the new name of the file.

II

The file is assumed to be in the HOMEPATH directory unless an
explicit < path> is specified. Then it can be on any drive and in
any path.

Do not rename any of the TBBS system control files.
System malfunction may result!

RENAME Orders.dbf TO FebOrder.dbf

COPYFILE
ERASE
FILE()

Syntax:

Purpose:

Arguments:

Options:

Usage:

Example:

Chapter 4: TDBS Commands

II REPLACE

REPLACE [<scope>] [<alias>->] < field > WITH
<exp>

[,[< alias2 >->] < field2 > WITH < exp2 > ••.]
[FOR <condition>] [WHILE <condition>]

Changes the contents of selected fields to the results of the
specified expressions.

< field > is the name of the target field to change.

11

< exp> is the expression which establishes the new value. It must
be the same type as the target field.

Alias: Fields in other than the current work area may be replaced
by preceding the field name with the alias and an arrow (- >)
delimiter.

Scope: The < scope > selects multiple records to replace in the
database file. The default < scope> is the current record only
unless a <condition> is specified in which case the default
<scope> is ALL.

Condition: The FOR option selects which records in the <scope>
to replace. The WHILE option limits the scope from the current
record until the condition fails.

When the master index key field is REPLACEd, the index is
updated and the relative position of the record pointer is changed
to the new position of this record. This means that < scope > and
WHILE limits can give unexpected results if you are replacing the
master index key field.

USE cust
SELECT 2
USE Invoices
APPEND BLANK && Blank record to fill in
REPLACE charges WITH (Cust->Markup * Cost),;

Custid WITH Cust->Custid,;
Cust->Tran WITH DATE()

4-99

Chapter 4: TDBS Commands

Multiuser:

See Also:

4-100

The TDBS Transparent File Sharing feature will assure that a
REPLACE on a shared file is propagated to all users immediately.
It also assures that the data and index file integrity is always correct.
Thus no record or file locks are required. If you wish to lock a
record out for more than the single REPLACE instruction (such
as may be that case if multiple REPLACE commands are required
to update the record) then you must use explicit record locking.

See the RLOCK() and W AIT4RLOCK() commands for explicit
record locking details. Be sure that all records involved are locked
if the REPLACE involves fields from multiple work areas.

APPEND
SET ORDER
UPDATE

Syntax:

Purpose:

Argument:

Option:

Usage:

Multiuser:

See Also:

Chapter 4: TDBS Commands

II
RESTORE

11

RESTORE FROM <file> [ADDITIVE]

Retrieves memory variables stored in a memory (.mem) file.

<file> is the memory (.mem) file to restore.

ADDITIVE: When the ADDITIVE option is specified, memory
variables restored from the memory file are added to the existing
pool of memory variables. Memory variables with the same name
are overwritten unless they are hidden first.

Without this option, all existing memory variables are released
before the memory file is restored.

When you RESTORE memory variables, they are initialized as
PRIVATE at the current procedure level unless they are declared
PUBLIC prior to the RESTORE and the ADDITIVE option is
used. Without ADDITIVE, all restored variables are PRIVATE
at the current level.

In order to assure that multiple copies of the same program do not
collide by using the same file to save variables when what is wanted
is unique private files, you may use the ULINE() function to create
a unique file name as follows:

RESTORE "Temp"+ULINE()

PRIVATE
PUBLIC
SAVE TO
Memory Variable Domains (Chapter 2)
ULINE()

4-101

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

Example:

See Also:

4-102

II
RETURN

II
RETURN

Terminates a procedure or program and returns control to the
calling program.

When RETURN is executed, any PRIVATE variables which were
created at this level are deleted. In addition, any previous instances
of those variables are unhidden and may be accessed again. Then
control returns to the calling program following the calling instruc
tion.

Normally the calling instruction is a DO command. However, in
the case of an ON ERROR, ON ESCAPE, or ON KEY "interrupt"
the return will be to the instruction which would have normally
executed next had the interrupting condition not occurred.

DO Pree
? "Returned"

PROCEDURE Pree
? "In Pree"
RETURN

Results:

PRIVATE
PUBLIC
DO

InProc
Returned

ON ERROR
ONKEY
ONESCAPE
QUIT

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

II RETURN TO MASTER
11

RETURN TO MASTER

Returns from any level to the main program.

RETURN TO MASTER performs a return at each level to release
any PRIVATE variables declared there. Then it returns to the
instruction following the most recent DO command issued by the
main program level.

RETURN
QUIT

4-103

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Multiuser:

Example:

See Also:

~104

II
SAVE

SAVE TO <file> [ALL [LIKE/EXCEPT <skeleton>]]

Saves memory variables to a memory (.mem) file.

II

< file> is the name of the file where specified memory variables
are SA VEed. If no extension is specified, .mem is assumed.

< skeleton> is the wildcard mask to specify a group of memory
variables to SA VE.

SA VE copies the specified memory variables to the memory file
without any reference to domain (PUBLIC and PRIVATE vari
ables alike are SA VEd). Hidden memory variables are not written
to the file. Only those instances of memory variables which are
accessible at the current program level are SA VEd.

If no arguments are given, ALL is assumed.

In order to assure that multiple copies of the same program do not
collide by using the same file to SA VE variables when what is
wanted is unique private files, you may use the ULINE() function
to create a unique file name as follows:

SA VE TO "Temp"+ ULINE()

SA VE and RESTORE open files in exclusive access mode and will
return a "File in use by another" error code on open collisions.

varl = "Initial string"
SAVE TO Temp
varl = "New string"
RESTORE FROM Temp
? varl

PUBLIC
PRIVATE
RESTORE

&& Result: Initial string

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II
SEEK

II
SEEK <exp>

Searches for the first index key matching a given expression.

<exp> is an expression of any type which is to be matched with
the master index key. It must be the same type as the key.

SEEK searches the current work area's master index starting with
the first key, and continues until a match is found or there is a key
value greater than the search argument. If there is a match, the
record pointer is positioned to the record number found in the
matching index, and FOUND() will report true (.T.). If there is
no match, then the record pointer is positioned past the end of file
if SET SOFTSEEK is OFF. If SET SOFfSEEK is ON, then when
a key is not found, the record pointer will be positioned to the next
highest key in the file.

If the key is a character type, the SET EXACT will affect the
comparison.

USE Invoice INDEX Custno
SEEK "45136"
? FOUND(), RECNO() && Result: .T. 425

This indicates that the first invoice for the customer with number
"45136" is record number 425 in the file.

FIND
SETEXACT
LOCATE
SET DELETED
SETINDEX
USE
EOF(), FOUND(), RECNO()

4-105

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

See Also:

4-106

II SELECT

SELECT < work area > / <alias>

Changes the current work area.

11

< work area> is a number from 1 to 10 which designates the
desired work area.

< alias> is the name of a currently open work area. The letters A
through J are "fixed aliases" for work areas 1 through 10. Each work
area also has as its alias either the name of the database file which
is open (by default) or an alternate alias which was specified on the
USE command with the ALIAS option.

You may use up to 10 work areas at the same time in TDBS, as long
as the maximum number of allowable files open is not exceeded.
Select does not open or close files. Select makes the specified work
area the current work area.

USE
SETINDEX
ALIAS(), SELECT()

Syntax:

Purpose:

Options:

Usage:

Multiuser:

Example:

See Also:

Chapter 4: TDBS Commands

II
SET ALTERNATE

II
SET ALTERNATE TO [[<path)<file>[.<ext>])[APPEND]

SET ALTERNATE ON/OFF

Directs output from ? and ?? commands to a text file.

TO: The SET ALTERNATE TO variation of this command opens
a standard DOS ASCII text file which can receive the output of the
? and?? commands under program control. The default extension
of this file is .txt if no extension is given. By default this file will be
created in the HOMEPATH directory unless a specific directory
is given. If no file name is present, then any currently open AL
TERNA TE file will be closed. If APPEND is used, then new data
is appended to any existing file text.

ON/OFF: The SET ALTERNATE ON or OFF commands allow
the program to dynamically route the output of the ? and ?? to the
alternate file. Note: SET ALTERNATE OFF does not close the
file, so a new SET AL TERNA TE ON can be used to append new
? and ?? output to the file.

Alternate files do not use a work area, and only one may be open
at a time. An alternate file is closed by CLOSE ALTERNATE,
CLOSE ALL, or SET ALTERNATE TO with no file name.

Alternate files are opened for exclusive use. In order to avoid
conflict in file names when several users are running the same
program, you may use the ULINE() function to append the line
number to the file name.

SET ALTERNATE TO "Tmpfile"+ULINE()
SET ALTERNATE ON
?, "Testing 1 2 3
CLOSE ALTERNATE

CWSE
?/??
ULINE()

~107

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

See Also:

4-108

II SET BELL
II

SET BELL ON/OFF

Sets the sounding of the warning bell on full screen edit on or off.

When SET BELL ON is issued, the bell will sound a warning in the
following cases during full screen editing:

1. You completely fill a memory variable on input.

2. You attempt to enter invalid data. This could be data of either
the wrong type, or wrong range as dictated by the PICTURE on
the GET and the type of variable.

Note: This BELL is completely independent of the operation of
the SET UPDATE BELL ON/OFF command, even though both
apply to full screen editing. This bell applies to your input, while
the UPDATE BELL applies to input from another user which
affected the screen you were editing.

SET CONFIRM
SET UPDATE BELL

Syntax:

Purpose:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II SET CENTURY
11

SET CENTURY ON/OFF

Sets display of century digits for date values on or off.

Using SET CENTURY ON will cause all default date displays to
use a four digit number for the year. Using SET CENTURY OFF
will cause all default date displays to use a two digit year.

SET CENTURY affects date displays in ?, ??, @ •.. SAY and
@ ... GET as well as the CTOD and DTOC functions.

SET CENTURY OFF
? DATE() && Result: 07/16/89
SET CENTURY ON
? DATE()

DATE()
CTOD()
DTOC()
YEAR()

&& Result: 07/16/1989

4-109

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

4-110

II
SET COLOR

SET COLOR TO [<standard>] [,<enhanced>]

Defines colors for the next screen output.

II

Each option (<standard> and <enhanced>) define both a
foreground and optional background color as described below.

< standard> defines the colors used for all normal output.

< enhanced> defines the colors used by the data fields in an
@ •.• GET command.

If no options are present, the colors are reset to their defaults.

Note: TDBS will accept up to three more arguments on the SET
COLOR TO command for syntax compatibility with other dBASE
language dialects. However those arguments will have no effect in
TDBS operation.

To display a particular color combination a one or two letter code
is used. In addition, attributes may be added to the color by use of
the + (for high intensity), • (for blinking), or (X) for inverse video.
Note: TDBS uses the ANSI "Set Graphics Rendition" code sequen
ces to communicate color and attribute changes to the user's
terminal (See pages 2-23 & 2-24 of your TBBS manual for these
codes). This means that your program should not set any colors
which the terminal in use cannot support. All VT-100 or ANSI
terminals will support the default color settings, high or low inten
sity, blink, and inverse video. Many do not respond to explicit color
settings. Keep this in mind when coding colors in your program.

Foreground and background color settings are divided by a slash
character (which is explicitly coded in this command). The follow
ing table lists the color codes which you can use on the SET
COLOR TO command:

Examples:

See Also:

Color or Attribute

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN (YELLOW if + used)
WHITE
INVISIBLE

UNDERLINE
INVERSE VIDEO
BLINKING
HIGH INTENSITY

SET COLOR TO W+/N, X
Password= SPACE(6)

Chapter 4: TDBS Commands

Code

N
B
G
BG
R
RB
GR
w
X

U (Monochrome only)
I

*
+

&& GET field invisible
&& set size of field

@ 23,0 SAY "Password: "GET Password
READ
SET COLOR TO && Return to defaults

This example allows the password to be invisible to the user while
it is being typed in. After the password is input, normal colors are
restored.

Menu= "W+/R"
Text = "W/N"
SET COLOR TO &Menu
DO DispMenu
SET COLOR TO &Text

&& Brt White on Red
&& white on Black

This example shows the use of macros to allow parametric control
over various categories of color settings.

SET INTENSITY
@ ... SAY .. . GET

4-111

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

See Also:

4-112

II
SET CONFIRM

11

SET CONFIRM ON/OFF

Either terminates the current GET field input automatically, or
requires an explicit terminating key press.

If SET CONFIRM OFF is in effect, then typing a character in the
last position of a GET field will automatically terminate the GET
input and advance to the next field. If SET CONFIRM ON is in
effect, then only one of the following field terminating keys will
terminate entry:

Ctrl-END ('''W)
UpArrow ("E)
DownArrow ("X)
Page Up ("R)
Page Down ("C)
Return ("M)
Esc (" [)

In addition a Left Arrow from the FIRST field will terminate, as
will a return or right arrow from the LAST field.

@ ••• GET
READ
SETBELL

Syntax:

Purpose:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II
SET CONSOLE

II
SET CONSOLE ON/OFF

Allows program control over sending ? and ?? to screen.

SET CONSOLE affects whether the output of the ? and ?? com
mands displays on the screen. It is usually used in conjunction with
SET PRINTER or SET AL TERNA TE to prevent ? and?? output
from going to the console as well as the alternate destination.

SET PRINTER TO LPTl
SET PRINTER ON
SET CONSOLE OFF
? "Send this line
SET CONSOLE ON
SET PRINTER OFF
SET PRINTER TO

SET PRINTER
SET ALTERNATE

to

&& Acquire LPTl
&& Route? to LPTl
&& Don't display it

the printer"
&& Turn screen back on
&& Turn off printer
&& Release printer

4-113

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

4-114

II SET DATE
11

SET DATE <format>

To set the format of the date display, input, and function calls.

The < format> argument establishes the date format until the next
SET DATE command is encountered. The <format> argument
must be one of the following:

AMERICAN
ANSI
BRITISH
FRENCH
GERMAN
ITALIAN

(Format is: mm/dd/yy)
(Format is: yy.mm.dd)
(Format is: dd/mm/yy)
(Format is: dd/mm/yy)
(Format is: dd.mm.yy)
(Format is: dd-mm-yy)

SET DA TE affects all date input and display formats. This allows
you a way to control date formatting for different countries from a
central location in your program.

SET DATE ANSI
? DATE() && Result: 89.07.16
SET DATE BRITISH
? DATE() && Result: 16/07/89
SET DATE GERMAN
? DATE() && Result: 16.07.89
SET DATE FRENCH
? DATE() && Result: 16/07/89
SET DATE ITALIAN
? DATE() && Result: 16-07-89
SET DATE AMERICAN
? DATE() && Result: 07/16/89

SET CENTURY
CTOD()
DTOC()

Syntax:

Purpose:

Argument:

Usage:

See Also:

Chapter 4: TDBS Commands

II
SET DECIMALS ii

SET DECIMALS TO < expN >

Sets the number of decimal places to display for numeric values.

< expN > is the number of decimal places to display from 1 to 15.

The exact operation of SET DECIMALS depends on the current
setting of the SET FIXED command. If SET FIXED is off, then
numeric values are displayed to the last non-zero decimal and the
SET DECIMAL value has no effect. No trailing zeros are dis
played after the decimal point. If SET FIXED is ON, then the
number of decimal places specified by the SET DECIMALS TO
are always displayed, even if they are zero.

Note: SET DECIMALS only affects the display. The internal
calculations are always done to 15.9 significant digits.

Examples:

SET DECIMALS TO 2
SET FIXED ON
? 2/4 && Result: 0.50
? 1/3 && Result: 0.33
SET DECIMALS TO 4
? 2/4 && Result:
? 1/3 && Result:
SET FIXED OFF
? 2/4 && Result:
? 1/3 && Result:

@ ... SAY ... GET PICTURE
?/??
SET FIXED
TRANSFORM()

0.5000
0.3333

0.5
0.333333333333333

4-115

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

See Also:

4-116

II SET DELETED
11

SET DELETED ON/OFF

Turn on or off automatic filtering of records marked deleted.

When SET DELETED is ON, most commands ignore deleted
records. However the GOTO command, and any command which
uses the RECORD <scope> access deleted records even with
SET DELETED ON.

When SET DELETED is OFF, all commands will access deleted
records. A deleted record may be detected by using the
DELETED() function.

DELETE
RECALL
DELETED()

Syntax:

Purpose:

Arguments:

Example:

See Also:

Chapter 4: TDBS Commands

II
SET DELIMITERS

SET DELIMITERS TO [<expC>/DEFAULT]

SET DELIMITERS ON/OFF

Defines the characters to delimit GET fields.

II

ON/OFF: If SET DELIMITERS is ON, then each GET field has
the specified delimiters displayed. If SET DELIMITERS is OFF,
the no delimiters are displayed.

TO: The SET DELIMITERS TO < expC > defines the delimiter
characters which are used to bound GET field displays. The
expression must resolve to a two character string. The first char
acter is the leading field delimiter, the second character is the
trailing field delimiter. If no string is specified, or if the keyword
DEFAULT is specified, then both delimiters are set to the default
value of colon.

mvar = "field"
SET DELIMITERS TO"[]"
SET DELIMITERS ON
@ O,O SAY "Enter" GET mvar
READ

Result:

@ ... GET
READ

Enter [field]

4-117

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

Example:

See Also:

4-118

II
SET DEVICE

11

SET DEVICE TO SCREEN/PRINT

Directs the output of@ ... SAY to either screen or printer.

SCREEN: Specifying SCREEN as the DEVICE directs all output
from the @ ... SAY command to the screen. This is the default.

PRINT: Specifying PRINT as the DEVICE directs all output from
the@ .. . SAY command to the printer. The printer must first have
been acquired by use of the SET PRINTER TO command or the
WAIT4LPT(n) function.

When the DEVICE is set to PRINT, then@ ... SAY commands
are sent to the printer, and are not sent to the screen. When sending
@ .. . SAY commands to the printer, the cursor position may only
be advanced. if it appears to go backwards, then a new page is
ejected from the printer and the output is placed on a new page.

SET PRINTER TO LPTl
SET DEVICE TO PRINT

&& Acquire printer
&& route to it

@ 4,20 SAY "Put on Printer"
EJECT && Form Feed
SET PRINTER TO

@ ... SAY
EJECT
SET PRINTER TO
PROW(), PCOL(), SETPRC()

&& Release printer

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II
SET DISCONNECT

11

SET DISCONNECT [MAXINST < expN > J
[MAXREPS < expN > J

Allows control of limits during an ON DISCONNECT procedure.

MAXINST- <expN> specifies the maximum number ofTDBS
instructions which may be executed by an ON DISCONNECT
routine. If < expN > evaluates to 0, then an unlimited number of
instructions may be executed after the user accidentally discon
nects. In this case, an ON DISCONNECT procedure which has an
error and loops will never release the line it is on. The default is
250 instructions.

MAXREPS - < expN > specifies the maximum number of record
cycles (repetitions) of any single multi-record instruction. The
default is O for no limit on a single multi-record instruction.

This command allows controlling the maximum time an ON DIS
CONNECT procedure may execute. It prevents a "runaway" ON
DISCONNECT procedure from locking out a line. SET DISCON
NECT with no arguments restores the default settings.

If an ON DISCONNECT procedure exceeds the specified limits,
then all files are closed and execution is terminated.

SET DISCONNECT MAXINST 200

This limits an ON DISCONNECT procedure to 200 instructions.

ON DISCONNECT

4-119

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

4-120

II
SET DISPLAY RULES

II
SET DISPLAY RULES TO TDBS/STD1/STD2

Allows display to conform to other dBASE dialect standards in
unusual cases.

TDBS: This is the default, and invokes what we feel are the display
rules you are most likely to expect in all conditions.

STDl: This setting forces TDBS to display unusual conditions as
the program dBASE III+ does in all cases except where dBASE
III + exhibits outright bugs.

STD2: This setting forces TDBS to display unusual conditions as
the program dBASE IV does in all cases except where dBASE IV
exhibits outright bugs.

This command is present in case some program depends on the
unusual "quirks" in the two dBASE program display routines. This
is unlikely, and thus this command will probably not be necessary.

Most of the "quirks" which TDBS altered are probably actual
programming bugs in the two dBASE products. However, this
command is provided in case some programmer has learned about
them and has come to depend on them.

Syntax:

Purpose:

Argument:

Chapter 4: TOBS Commands

II
SET DIVIDE BY ZERO

II
SET DIVIDE BY ZERO TO ERROR/INFINITY

Allows choice of how to handle a divide by zero condition.

INFINI'IY: This is the default, and is bow dBASE III+ handles
divide by zero conditions. No error is reported, and the result of
the operation is set to the largest possible number.

ERROR: If you issue the SET DIVIDE BY ZERO TO ERROR
then a divide by zero condition will generate an error. This prevents
you from accidentally dividing by zero and believing the result is
significant.

4-121

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

4-122

II
SET EDITOR

11

SET EDITOR [READONLY][NOMENU][NOISTAT)
[NORFILE] [NORPATH] [NOWFILE] [NOWPATH] [IGRAVE]

Allows the appearance and features of the built in memo editor to
be customized to the program's needs.

READONLY - The editor will only display memo records. The user
cannot make any changes, and all edit controls are absent from the
editor menu.

NOMENU - The menu box is NOT displayed, allowing all but the
first line of the screen to be used by the memo editor for text.

NOISTAT - The status line is always displayed in "normal" mode,
even when SET INTENSITY ON is in effect.

NORFILE - This disables the "'KR command, and it does not
appear in the edit menu. The user may not access other disk files.
NORPATH - This limits the "'KR command to only be able to read
files which are in the HOMEPATH. The user cannot access files
in other directories.

NOWFILE - The "'KW command is disabled and is not in the
editor menu. the user cannot output a memo to a normal disk file.
NOWPATH - The "'KW can only write text files to the
HOMEPATH. The user cannot create files in other directories.

IGRAVE - Causes the memo editor to consider Ox8D as a display
able character and not a soft return (which is ignored).

This command allows control of the access which a user of the
memo editor has to other files in the system by limiting editing
options. If a SET EDITOR command is issued operation is res
tored to the dBASE compatible mode.

SET EDITOR NORFILE NOWFILE

This prevents access to text files outside the program itself.

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

SET ESCAPE

SET ESCAPE ON/OFF

Allows control over the Esc key interrupt action.

In all cases, pressing Esc during a READ command will end the
READ without changing any file fields. During ACCEPT or
INPUT the Esc key will be treated as data. An INKEY() will read
the Esc key as data also, if it is left in the input data stream as
explained below.

In all other program conditions, the Esc key can either be specified
to be treated as data, or to cause a program interrupt. If SET
ESCAPE OFF is in effect, the Esc key is always treated as any other
key and is left in the input data stream.

If SET ESCAPE ON is in effect, then the Esc key will cause an
interrupt when it is placed in the typeahead buffer. This means that
it can cause an escape interrupt even if there are unread characters
ahead of it in the typeahead buffer. In this case, any typeahead data
is removed from the typeahead buffer and discarded. The type of
interrupt is determined by the ON ESCAPE command. If there is
no ON ESCAPE, TDBS will ask if you want to abort. Answering
No allows the program to continue, answering YES will abort after
closing all files. If the ON ESCAPE is in effect, the the interrupt
will activate the ON ESCAPE routine.

Note: SET TYPEAHEAD O will inhibit all escape inter
rupt processing no matter what the setting of the ON
ESCAPE or the SET ESCAPE command.

ONESCAPE
SET TYPEAHEAD

4-123

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

Example:

See Also:

4-124

II SET EXACT
II

SET EXACT ON/OFF

Determines how two character strings are compared.

When SET EXACT OFF is in effect (the default setting) two
character strings are compared as follows:

There are two strings in any text comparison, the target string and
the comparison string. In the equation A = B, B is the target string
and A is the comparison string. In a command such as SEEK the
index key is the target string, and the SEEK argument is the
comparison string.

If the target string is null, return true (.T.) for the comparison.

If LEN(target) is greater than LEN (comparison) return false (.F.)
for the comparison.

Compare all characters in the target with the comparison string. If
all characters in the target match the leading characters of the
comparison string then return true (.T.) otherwise return false (.F.).

Note: This means the target string may be shorter than the com
parison string and still return a match.

If SET EXACT IS ON, then the two strings must match exactly.

SET EXACT OFF
? "123" = "12345" && Result: .F •
? "12345" = "123" && Result: .T.
? "123" = "" && Result: .T.
? "" = "123" && Result: .F.
SET EXACT ON
? "12345" = "123" && Result: .F.
? "123" = "123" && Result: .T.

FIND
LOCATE
SEEK

Syntax:

Purpose:

Usage:

Multiuser:

See Also:

Chapter 4: TDBS Commands

II
SET EXCLUSIVE

II
SET EXCLUSIVE ON/OFF

Sets the default file mode with which USE will open files.

The default is SET EXCLUSIVE ON. In this case, USE will open
all files for EXCLUSIVE use only, and no files may be shared.

SET EXCLUSIVE OFF changes this default to shared so that more
than one user can USE the same files and share them. You may
still override this on each individual USE command by specifying
the EXCLUSIVE option for that file (or set of files).

TDBS provides Transparent File Sharing automatically when files
are shared, so no explicit record or file locking is required. You
may still use explicit locking where your application requires lock
ing out a multiple access for longer than a single TDBS command
line. See chapter 3 for a complete discussion of the TDBS file
sharing features.

USE
RLOCK(), FLOCK()
Chapter 3 on file sharing

4-125

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Examples:

See Also:

4-126

II SET FILTER
11

SET FILTER TO [<condition>]

To make a database file appear as if it contains only the records
meeting a specified condition.

< condition > is a logical expression that identifies a specific set of
records for the current work area.

If not condition is specified, then any existing SET FILTER for the
currently selected work area is deactivated.

When a FILTER condition is SET, the database acts as if it only
contains records matching the specified condition. Each work area
can have its own separate SET FILTER condition.

When a FILTER is SET, it is not activated until the next time the
record pointer is moved. A filter has no effect on an INDEX or
REINDEX command, and you may directly access filtered records
by using the GOTO command or RECORD < n > scope.

USE customers
SET FILTER TO Zipcode = 80014
GO TOP
DO WHILE .NOT. EOF()

? custName
ENDDO
SET FILTER TO

This example lists that name of all customers in the 80014 ZIP code.

Note: If you set a filter that selects only a small number of records
from a very large database, the SET FILTER command has very
poor performance. You should read each record and filter them
in the program in such cases for good performance.

SET DELETED

Syntax:

Purpose:

Options:

See Also:

Chapter 4: TDBS Commands

II
SET FIXED

II
SET FIXED ON/OFF

Control the display of numeric output based on the current SET
DECIMALS command setting.

ON: When SET FIXED ON is in effect, all numeric output is
displayed to the number of decimal places specified in by the SET
DECIMALS TO command. The default is 2 places if no SET
DECIMALS has been issued).

OFF: When SET FIXED OFF is in effect, then numeric output is
displayed to either the last significant digit, or up to but not includ
ing the first zero after the decimal point. No decimal point is
displayed if the number is an integer. SET DECIMALS has no
effect when SET FIXED OFF is in effect.

SET DECIMALS

4-127

Chapter 4: TDBS Commands

Syntax:

Purpose:

Options:

Usage:

Compiling:

See Also:

4-128

II
SET FORMAT

II
SET FORMAT TO [<procedure>] [NOCLEAR]

Activates (or deactivates) a screen format procedure which will be
performed by each READ command.

< procedure > is a format (.FMT) file, a program file, or a proce
dure which is to become the format procedure for READs.

NOCLEAR: Normally the screen is cleared before execution of a
format procedure READ command. This option suppresses this
automatic screen clear to allow complete customization of the
format by the procedure.

Note: SET FORMAT TO with no options will deactivate any
current format procedure.

In TDBS format procedures may have any commands and are not
just limited to screen format commands and the READ command.
This extension allows format procedures to even call sub
procedures if necessary. Multiple-page format files are supported
by TDBS, except that the Page Up key will not "back up" to the
previous screen in the format file. This action can be implemented
under program control, however, since program structures are
valid in TDBS format files.

A SET FORMAT TO command which occurs in a format file will
be ignored.

A RETURN is not required at the end of a format file, but one may
be specified anywhere you wish.

Unless you use a .TDB compiler control file, a format file must be
renamed to have a .prg extension. Otherwise the autocompile
feature of the TDBS compiler will not find it.

@ ... SAY ... GET
READ

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II SET FUNCTION

SET FUNCTION <key> TO [< expC >]

To assign a character string to a function key.

<key> is the function key number (2-10).

II

< expC > is the character string to assign to the function key.

SET FUNCTION assigns a character string to a function key.
When that function key is pressed, this string is stuffed in the input
buffer. Any valid character may be in this string.

If the string ends in a semicolon, a carriage return is generated at
the end of the string.

If the string is empty or not specified, then the indicated function
key is emptied of any previous string value.

Strings of up to 254 characters may be loaded into function keys.

SET FUNCTION 3 TO "Name;"

This will send the string Name followed by a carriage return to the
program input when function key 2 is pressed.

FKLABELO
FKMAXO

4-129

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Macros:

See Also:

4--130

II
SET INDEX

II
SET INDEX TO < file list>

Opens specific index file(s) in the current work area.

< file list> is one or more index (.ndx) file names separated by
commas. Each file name may be preceded by a <path> specifica
tion, and if it is not the file is assumed to be in the HOMEP A TH
directory. The first file in < file list > becomes the master index
for the current work area.

SET INDEX TO without a < file list> closes any index files open
in the current work area.

When more than one index is opened for a database, the first file
specified becomes the master (or controlling) index. The record
pointer is initially positioned to the first logical record in that index
file. During database processing ALL index files specified are
updated whenever their key value is appended or changed. To
change the master index file without issuing another SET INDEX
command, use the SET ORDER command.

Index files may be specified using macros, but each file name must
be in a separate macro variable. For example:

ndxl = "Name"
ndx2 = "CustNo"
SET INDEX TO &ndxl, &ndx2

USE
CLOSE
CLOSE INDEX
SET ORDER

Syntax:

Purpose:

Usage:

Chapter 4: TDBS Commands

II
SET INTENSITY

II
SET INTENSITY ON/OFF

Sets the display of GET screen edit fields to take place in either
enhanced of standard color settings.

If SET INTENSITY is ON (the default condition) then all GET
edit fields will be displayed using the enhanced color settings.

If SET INTENSITY is OFF, then all GET edit fields will be
displayed using the standard color settings.

The color settings are controlled by the SET COLOR TO com
mand.

This command allows all the areas on the screen which may be
modified during a full screen edit to be highlighted, or optionally
to be displayed with the same attributes as the rest of the screen
characters.

See Also:

@ ... SAY ... GET
READ
SETCOLOR

4-131

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

4-132

II
SET MARGIN

II
SET MARGIN TO < expN >

Sets the left margin for all printer output.

< expN > specifies the column which is to become the left margin.

SET MARGIN has no effect on the screen display. It only affects
output sent to the printer. Note: PCOL() will reflect the absolute
printer column position, it is therefore "biased" if any margin other
than zero is set.

The default margin is 0.

SET PRINTER TO LPT2 && Acquire LPT2
SET PRINTER ON && route ? to LPT2
SET CONSOLE OFF && don't display?
SET MARGIN TO 10 && set LPT margin
? "This is line l"
? "This is line 2"
EJECT && Send top-of-form
SET PRINTER TO && Release LPT2

This example prints the two lines beginning in column 10 of the
printer page.

SET PRINTER TO
SET PRINTER
SET DEVICE
SET CONSOLE
?/??
@ •.• SAY

Syntax:

Purpose:

Usage:

Example:

Chapter 4: TDBS Commands

II
SET MEMOWIDTH

II
SET MEMOWIDTH TO < expN >

To set the column width of memo field screen output.

The default width for memo field displays is the user's TBBS width
setting. The SET MEMOWIDTH command may be used to alter
this width. SET MEMO WIDTH affects only memos display by the
"?" or "??" commands.

The following will display the memo field "text_ info" with a width
of 40 columns:

SET MEMOWIDTH TO 40
? Text info

See Also: ?
??

4-133

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

See Also:

4-134

II
SET ORDER

II
SET ORDER TO [< expN >]

Selects a new master (controlling) index file.

< expN > specifies the new master index by pointing to its position
in the list of open index files in the current work area.

SET ORDER TOO resets the database to its "natural" order (Tecord
number order) by indicating that there is NO master or controlling
index. The index files are still remembered however, and are
properly updated if any key field is modified. They do not control
the logical record order however, and logical record order becomes
physical record order.

The default is SET ORDER TO 1, which places the first named
index file as the master (controlling) index.

SET INDEX
USE

Syntax:

Purpose:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II
SET PRINT

II
SET PRINT ON/OFF

Controls output of? and?? command text to the printer.

By default PRINT is OFF, and the output from the ? and ??
commands does not go to the printer. SET PRINT ON causes the
output of these two commands to be directed to the printer. This
does NOT stop the output of these commands from going to the
screen as well. If you only want the output of the ? and ?? com
mands to go to the printer, you must also use the SET CONSOLE
OFF command.

Note: You must have acquired a printer before issuing this com
mand, or all printer output will be discarded.

USE custFile
SET PRINTER TO
SET PRINT ON
SET CONSOLE OFF
DO WHILE .NOT.

? customer
SKIP

ENDDO
EJECT
SET P.RINT OFF
SET CONSOLE ON
SET PRINTER TO
CLOSE DATABASES

EJECT
SET CONSOLE
SET PRINTER TO
SETDEVICE

LPTl

EOF()

&& request a printer
&& ?/?? to printer
&& ?/?? not to screen

&& Print cust Names
&& next record

&& top of form LPTl

&& return ?/?? normal
&& Return LPTl
&& Close the file

4-135

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Usage:

Multiuser:

See Also:

~136

II
SET PRINTER TO

SET PRINTER TO [LPT1/LPT2/LPT3/LPT4]

Requests and assigns this program a printer to use.

II

LYfn: Specifies which one of a possible four printers which may be
connected to a TDBS system is being requested.

SET PRINTER TO with no arguments will release any printer
currently assigned to this program for use by others.

By default a TDBS program has no access to a printer. Any printed
output goes to the NUL: device and is discarded. Before a TDBS
program can output data to a printer it must first request that
printer and successfully have it assigned.

If the requested printer is in use by another program, then the SET
PRINTER TO command will generate an error. This error may be
fielded by an appropriate ON ERROR routine to retry the request.
Optionally the W AIT4LPT(n) command may be used to wait for a
specific printer to become available.

@ ... SAY
SET DEVICE
SET PRINT
SET CONSOLE
WAIT4LPT(n)

Syntax:

Purpose:

Argument:

Usage:

Chapter 4: TDBS Commands

II SET PROCEDURE II
SET PROCEDURE TO [<file>]

Compiles all procedures in the specified file so they may be ac
cessed by the rest of the TDBS program.

< file> is the name of a procedure file. The file has the extension
of .PRG and contains TDBS source code statements.

A procedure file may contain any number of procedures. When a
SET PROCEDURE TO command is encountered, TDBS com
piles the procedure file into the current program.

In TDBS separate procedure files are not required, as multiple
procedures may be placed in any program file including the main
program. All procedure names must be unique.

For compatibility with interpretive dBASE language dialects,
TDBS treats the CLOSE PROCEDURE and SET PROCEDURE
with no arguments as no operation commands if encountered.

See Also: DO
PROCEDURE
RETURN

4-137

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Option:

Usage:

4-138

II SET RELATION
II

SET RELATION TO [<key exp> /RECNO() INTO
<alias>] [ADDITIVE]

Relates two work areas so they perform as a single database file.

< key exp> is an expression which both files have in common, and
which is indexed on the linked file (<alias>). RECNO() may be
used instead of a common key expression, and establishes a one-to
one relationship based on the logical record number of the files.
Neither file has to be indexed for this relationship.

<alias> specifies the "child" work area where the file to be related
to has been opened.

SET RELATION TO with no arguments dissolves any current
relationship in effect.

ADDITIVE: Adds this relation to any other current relations for
the currently open work area. Otherwise all current relations are
released before this new relation is set.

The SET RELATION command links the database in the current
work area to one or more other open database(s). The current
work area is one side of a one-to-many relationship. The common
key expression must have the same type and size in both files. It
doesn't need to be indexed in the current work area, but it must be
the master index in the "child" work area.

The SET RELATION command operates as follows:

• When a record is positioned in the current work area, the value
of any "related" key expression is used to do a SEEK on the
"child" work area. This makes the "child" database file(s)
always reflect the relationship which has been set
automatically. If the value of the "related" key expression has
no corresponding value in the "child" file then the record
pointer in the "child" file is set to EOF() regardless of the
current setting of SET SOFTSEEK.

Multiuser:

Example:

See Also:

Chapter 4: TDBS Commands

You may establish up to nine relations per work area. Note: You
may not set up a circular relationship. That is, you cannot relate a
database file either directly or indirectly to itself.

If a SET RELATION is in effect, then both files will be locked and
unlocked simultaneously by the RWCK() and FLOCK() func
tions. The TDBS Transparent Ftle Sharing feature will also assure
that all updates to linked files are properly interlocked automat
ically for the entire instruction duration to assure the integrity of
both files in a relationship and all of their indexes. If an interlock
is required across multiple REPLACE commands to assure in
tegrity, you must use the RWCK() function.

SELECT A
USE cust INDEX Custno
SELECT B
USE Invoices
SET RELATION TO Custno INTO cust
DO WHILE .NOT. EOF()

? InvNwn, cust->CustName
SKIP

ENDDO
CLOSE DATABASES

This example lists all invoice numbers and the customer name for
each. The two databases are related by customer number.

INDEX ON
REPLACE
SETINDEX
SETORDER
USE
RLOCK(), FLOCK(), WAIT4RLOCK(), W AIT4FLOCK()

4-139

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

See Also:

4-140

II SET SOFTSEEK
II

SET SOFTSEEK ON/OFF

Sets relative or absolute SEEKing.

If SOFfSEEK is ON and a match for a SEEK (or FIND) is not
found, the record pointer is set to the record with the next highest
index key. If there is no record with a higher key, the file is
positioned past the end and EOF() is set true (.T.).

If SOFfSEEK is OFF, and a match for a SEEK is not found, the
record pointer is positioned to past the end of the file and EOF()
is set true (.T.). This is the default setting and is dBASE com
patible.

FOUND() operates the same regardless of the setting of
SOFfSEEK and is set true (.T.) if a key match occurs, and set to
false (.F.) if a match is not found.

Note: SET EXACT affects the string comparison if the index file
has character keys.

SETEXACT
SET RELATION
SEEK
FIND
FOUND()

Syntax:

Purpose:

Argument:

Usage:

See Also:

Chapter 4: TDBS Commands

II
SET TYPEAHEAD

II
SET TYPEAHEAD TO < expN >

Sets the size of the keyboard input buffer.

< expN > determines the size of the typeahead buffer and is in the
range O to 255.

By default the typeahead buffer is set to 255.

Note: SET TYPEAHEAD O will disable any ON ESCAPE or ON
KEY interrupt routines. In addition, NEXTKEY and INKEY will
always return O since there can be no characters waiting.

SET TYPEAHEAD O will also disable the wait portion of the
TDBS extended functions WAIT4RWCK(), WAIT4FLOCK(),
WAIT4MAIL(), and WAIT4LPT(n) since no typed ahead key can
be detected to end the wait. Thus these functions will make a single
attempt to acquire the resource they are asked to wait for, and if
they fail will immediately return false (.F.) and will not wait.

If the size of the typeahead buffer is changed, any characters which
were in the buffer at the time are discarded.

ACCEPT
INPUT.
READ
ONESCAPE
ONERROR
SETESCAPE
INKEY(), NEXTKEY(), LASTKEY(), READKEY()

4-141

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

See Also:

4-142

II
SET UNIQUE

II
SET UNIQUE ON/OFF

Determine whether index files are to include non-unique keys when
creating a new index.

The status flag set by this command is only used by the INDEX and
ZAP commands. These commands will set the specified index
file(s) to indicate if these indexes are to include duplicate keys or
not. This status becomes part of the index file itself, and as new
records are added, or record keys are updated, each index file is
handled according to its own status setting. This means that UNI
QUE and non-UNIQUE index files may be mixed on the same
database file, and the current SETting of UNIQUE does not matter
when records are updated.

A UNIQUE index file will not contain index keys to more than one
record with each unique key. If duplicate keys exist in records, then
the remainder of the records with the same key value will not appear
to exist if this index is used to access the database.

FIND
SEEK
USE
SET INDEX
ZAP

Syntax:

Purpose:

Usage:

See Also:

Chapter 4: TDBS Commands

II
SET UPDATE BELL

11

SET UPDATE BELL ON/OFF/ROLLBACK

Determines alert condition for a shared file screen update collision.

This command allows setting an option which will alert the user if
a READ full screen edit is in progress on database field values and
another user updates these same fields in the same record.

The TDBS Transparent Screen Update and Rollback on Collision
feature allows multiple users to do full screen editing on a shared
file. This feature will immediately post any changes made by
another user to the record you are editing on your screen.

The SET UPDATE BELL command determines what alert (if any)
will be given to you if another user changes one or more of the fields
you are currently editing.

OFF: No alert will be given when another user changes a field which
is part of the full screen edit you are doing. The changed values will
be immediately displayed, and any of the changed fields you have
edited will be rolled back to their new values as input by the other
user.

ON: This setting will give an alert bell if any field which is currently
part of ,a GET on your screen is updated by another user, even if
you haven't changed it in this READ.

ROLLBACK: This setting (the default) will only give an alert bell
if another user changes a field you have edited during this READ,
but have not yet committed. Changes to other fields which are part
of your GET list, but which you haven't changed during this edit
will have the new value displayed on the screen, but no alert bell
will sound.

READ
Transparent Screen Update in Chapter 2

4-143

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Usage:

Example:

See Also:

4-144

II SKIP
II

SKIP [<expN>)

Moves the record pointer relative to the current position for the
database file in the current work area.

< expN > specifies the number of records to move the record
pointer from the current position. A positive value moves the
record pointer forward, a negative value moves it backwards. If
< expN > is omitted, the default is + 1 (skip to next record).

SKIPping backward beyond the beginning of the file moves the
pointer to the first record and BOF() returns true (.T.). Another
skip backwards when BOF is true will return an error.

SKIPping forward past the end of file positions the record pointer
to RECCOUNT() + 1 and EOF() returns true (.T.). Another skip
forwards when EOF is true will return an error.

If a master (controlling) index is in use, the skip takes place in the
index itself, and the record pointer is set to the resulting database
record.

USE Filel
? RECNO() && Result: 1
SKIP
? RECNO() && Result: 2
SKIP 28
? RECNO() && Result: 30
SKIP -5
? RECNO() && Result: 25

GOTO
FIND
SEEK
LOCATE
CONTINUE
BOP(), EOF(), RECNO(), RECCOUNT()

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

STORE

STORE <exp> TO < memvar list>
or

<memvar> = <exp>

Initializes and/or assigns a value to one or more memory variables.

< exp > is an expression which results in a value of any data type.
This data type is assigned to the target memory variable(s).

< memvar list > are the memory variables to initialize and assign
the value and type to.

STORE (and its alternate form equate) both creates and assigns a
value to memory variables. If the variable name already exists, then
STORE assigns the value and type of the expression to the current
instance of the variable. If the variable does not exist, STORE will
create it first. The domain of all memory variables which STORE
creates automatically is PRIVATE at the current program level.

STORE can only modify memory variables. Fields are modified by
using the REPLACE command. Either fields or memory variables
may be modified by the READ command.

Note: Both Fields and Memory Variables may have the same name.
When there is a name conflict, the field will be accessed by expres
sions. If you want the memory variable instead, the conflict may be
resolved using an <alias> qualifier. Memory variables have an
<alias> of M- > which may be used as a field <alias> normally
is used to qualify accesses.

varl = M->Name && Use Memvar Value
var2 = Name && Use Field value
STORE OTO varl, var2, var3, var4

CLEAR MEMORY
RELEASE
PRIVATE, PUBLIC
SA VE, RESTORE

4--145

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Options:

See Also:

4-146

II
SUM

II
SUM [<scope> J < expN list> TO < memvar list>

[FOR <condition> J [WHILE <condition>]

Sums a series of numeric expressions to memory variables for a
range of records in the current work area.

< expN list> is the list of numeric values to SUM for each record
processed.

< memvar list > is the list of variables which will receive the SUM
values. This list must contain one variable for each expression.

Scope: The <scope> is the portion of the database file to SUM.
The default <scope> is ALL.

Condition: The FOR option filters records within the scope. Only
records which match the FOR <condition> are summed. The
WHILE condition limits the scope to the set of records beginning
with the current record until the < condition > fails.

AVERAGE
TOTAL

Syntax:

Purpose:

Arguments:

Usage:

See Also:

Chapter 4: TDBS Commands

II
TEXT

II
TEXT

< text to be displayed>
ENDTEXT
Displays a block of text.

< text to be displayed> is a block of literal characters to be
displayed.

The TEXT ... ENDTEXT command display follows the same
routing rules as the ? command, and thus may be routed to the
printer using the SET PRINT command.

Macros within the text block are expanded, however no word
wrapping will take place. The expanded lines will still have hard
returns at the end of each individual line.

?/??
@ ••• SAY

4-147

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Option:

Usage:

See Also:

4-148

II
TYPE

11

TYPE <file> [TO PRINT]

Displays the contents of a text file to the screen or printer.

<file> is the text file to display. An optional <path> may be
added to locate the file on any drive or directory, the HOMEP A TH
directory is assumed by default.

TO PRINT: This option routes the display to the currently selected
printer instead of the screen. Note: You must have used the SET
PRINTER TO command to assign a printer or all printed output
is sent to the NUL: device resulting in no output.

Output to the screen may be paused using "' S, with "' Q to restart.
Note that you may interrupt a TYPE listing with Esc between each
line displayed.

COPY FILE
SET PRINTER TO

Syntax:

Purpose:

Option:

See Also:

Chapter 4: TDBS Commands

II
UNLOCK

UNLOCK [ALL]

Releases file or record locks set by the current user.

ALL: If this option is specified, then all locks in all work areas are
released. If not specified, then only locks in the current work area
(and any related work areas) are released.

SET EXCLUSIVE
USE ... EXCLUSIVE
FLOCK(), W AIT4FLOCK()
RLOCK(), W AIT4RWCK()
TDBS multiuser features - Chapter 3

4-149

Chapter 4: TDBS Commands

Syntax:

Purpose:

Argument:

Options:

4-150

II
USE

II
USE [<file>] [INDEX < file list>] [ALIAS <alias>]

[EXCLUSIVE] [READONL VJ
Opens an existing database (.dbf) file, and any associated index files
in the currently selected work area.

< file > is the name of the database file to open. An optional
< path> may be specified. By default the file is assumed to reside
in the HOMEPATH directory.

INDEX: This option may be used to specify the names of up to 7
index files to associate with the database file. The first file named
will become the master (or controlling) index file and determines
the logical record order.

Alias: This option is used to give the work area an < alias> name
other than the file name. By default the < alias> is the database
filename.

EXCLUSIVE: This option forces the file to be opened for the
exclusive use of this program. By default the file will be opened
either EXCLUSIVE or SHARED based on the current SET EX
CLUSIVE TO setting. If the file is in use by another, an error is
generated. An ON ERROR routine may be used to field and retry
a USE with the EXCLUSIVE option.

READO NL Y: Normally TD BS requires read/write access to all files
in a work area (.DBF, .DBT, .NDX) to correctly implement
transparent file sharing. The READO NL Y option allows access
to files which are restricted from write access (e.g. by LAN file
security or because they are on CD-ROM). Any attempt to alter a
field in a file opened READO NL Y will generate an error.

Note: TDBS expects you to be consistent in the use of the
READO NL Y option! If you open a file that isn't restricted with
READO NL Y and another program opens the same file without
READONL Y, TDBS will not correctly be able to protect file
integrity. In some cases this can cause file damage. So never mix

Usage:

See Also:

Chapter 4: TDBS Commands

the use ofREADONL Y and non-READONL Y USE on the same
file!

When a database file is opened, the file is positioned to the first
logical record in the file (record 1 if no index is specified).

USE with no arguments closes any open database and/or index files
in the current work area.

CLOSE
SELECT
SETINDEX
SETORDER

4-151

Chapter 4: TDBS Commands

Syntax:

Purpose:

Arguments:

Options:

Usage:

See Also:

4-152

II
USE MAILBOX

II
USE [< .dbf file>] [ALIAS <alias>] MAILBOX [JOURNAL]

Opens intraprogram communications channel which simulates a
database file in the current work area.

< .dbf file > is the name of a database file with a single record in it
which will define the structure of the mailbox channel. A < path>
may be used, but by default the file is assumed to reside in the
HOMEPATH directory.

MAILBOX: Defines this as a mailbox channel instead of a normal
database file.

ALIAS: Allows the use of an < alias > name other than the
database file name. By default the < alias > is the name of the file.

JOURNAL: This option forces the mailbox channel image to be
checkpointed to the database file every time any data is updated.
This option has no use in TDBS 1.0, but is fully implemented.

A mailbox channel appears in general to be the same as a one
record database file. However it is a very efficient intraprogram
communications channel. See TDBS Mailboxes in Chapter 3 for a
full discussion of how to use mailboxes for program to program
communications.

CLOSE
NEWMAIL(), WAIT4MAIL()

Syntax:

Purpose:

Options:

Usage:

Example:

See Also:

Chapter 4: TDBS Commands

II WAIT

WAIT [< prompt>) [TO < memvarC >)

Pauses program execution until a key is pressed.

11

Prompt: The optional <prompt> is displayed before the program
is paused. If no < prompt> is used, the default < prompt> string
of "Press any key to continue ... " is displayed.

< memvarC > If the TO < memvarC > option is specified, the key
which is pressed is returned to this variable.

WAIT returns the character entered to the specified memory
variable.

WAIT "Press a key to resume" TO Key

ACCEPT
INPUT
INKEY()

4-153

Chapter 4: TDBS Commands

Syntax:

Purpose:

Usage:

Multiuser:

See Also:

4-154

II
ZAP

11

ZAP
Removes all records from the database file in the current work area.

ZAP does not mark all records deleted, it actually removes them
from the database file. Any currently associated index files also
have all records removed from them.

Note: Any index files which are specified are also reset to zero
records. The UNIQUE status of all index files is set to the current
SET UNIQUE status.

No other user may be using the file when the ZAP is executed, or
an error will result. This error may be avoided if the file is opened
for EXCLUSIVE use before the ZAP is issued.

CLEAR
DELETE
SETUNIQUE
USE

I FUNCTIONS

FUNCTIONS

Chapter 5: TDBS Functions

Function Overview

Example:

TDBS functions are internal operations which return a single char
acter, numeric, or logical value. Functions are used in conjunction
with TDBS commands to perform operations on either individual
items of data, or to perform operations and status evaluation which
return true or false answers as a logical data item. Functions may
have arguments which are the input data item or items they operate
upon. Arguments are enclosed in parentheses after the function
name. Functions which have no arguments, still require the use of
parentheses so that the function name may be recognu.ed as not
being a variable or field name.

A function may be used in place of any memory variable in an
expression. Functions may be used as arguments to other functions
as well, and this process may be nested up to 20 levels deep.

chars= LTRIM(RTRIM(string))

This is an example of using a function as an argument for another
function. RTRIM(string) produces a copy of string with the trail
ing (right hand) blanks removed. LTRIM takes this string as an
argument and removes the leading (left hand) blanks from it. Thus
the result of this expression is a character string which is a copy of
"string" with all leading and trailing blanks removed. The memory
variable chars is then assigned this string as its value.

TDBS provides all of the standard dBASE language functions. In
addition many extended functions are provided. These functions
allow access to many elements of the TDBS environment, and also
ease many common programming tasks. Note: Ir you use any of
these extended functions, your program will not be compatible
with other dBASE language dialects.

Function Syntax
The TBDS functions in this chapter are described with the same
syntax as is used in Chapter 4 to describe commands. To identify
the element types used in the syntax descriptions in this chapter,
see pages 4-1 and 4-2 where these element types are explained.

5-1

Chapter 5: TDBS Functions

Summary of TDBS Functions

5-2

ABS{< expN >)

Returns the absolute value of < expN >.

A COPY { < array1 >, < array2 > [, < expN 1 > [, < expN2 >
[, < expN3 >]]])

Copies elements from < arrayl > to < array2 > .

ADEL{< array>,< expN >)

Deletes element < expN > from <array>.

AFIELDS{ < array1 > [, < array2 > [, < array3 > [, < array4]]])

Fills a series of arrays with field definition information for the
current work area and returns the number of fields.

AFILL{ <array>,< exp>[,< expN 1 > [, < expN2 >]])

Fills all or part of < array> with < exp > .

AINS{ <array>,<expN >)

Inserts new element into < array> at position < expN > .

ALIAS{[< expN >])

Returns a string with the <alias> name of work area < expN > .

ASC{<expC>)

Returns ASCII numeric value of the first character of < expC > .

ASCAN{<array>,<exp> [,<expN1 > [,<expN2> 11
Searches <array> for <exp> starting with element < expNl > .

ASORT/ADSORT{ <array>[,< expN1 > [, < expN2 > 11
Sorts < array> in ascending (or descending) order starting at
element < expNl >.

AT{< expC1 >, < expC2 >)

Searches for string < expCl > inside string < expC2 > .

BOF0

Returns .T. if beginning-of-file has been reached.

Chapter 5: TDBS Functions

CAPFIRST(< expC >)

Returns a copy of < expC > with the first letter forced upper case.

CDOW(<expD>)

Returns the day of the week or < expD > as a character string.

CEILING(< expN >)

Returns integer number equal to or next higher than < expN >.

CHR(< expN >)

Convert < expN > to ASCII character value.

CMONTH(< expD >)

Returns the name of the month of < expD > as a character string.

COLO

Returns the number of the current screen column position.

CRTRIM(<expC>)

Removes any end-of-line sequence from a text string.

CTOD(< expC >)

Converts < expC > text date to a date type.

DATEQ

Returns today's date as a value in date type.

DAY(<expD>)

Returns numeric value of the day of the month from < expD >.

DBFO
Returns the name of the currently selected database file.

DEC2HEX(< expN >)

Returns string of < expN > converted to hexadecimal.

DELETEDQ

Returns .T. if the current record is marked for deletion.

5-3

Chapter 5: TDBS Functions

5-4

DESCEND0
Allows creation and SEEKing of descending order indexes.

DISKSPACE0

Returns the number of bytes of free space available on the current
work area's database file drive.

DOTBBS0

Detects if the DOTBBS command is supported.

DOW(< expD >)

Returns the number of the day of the week of < expD > .

DTOC(< expD >)

Returns a text string in date form for the date of < expD > .

DTOS(< expD >)

Returns a string of the date < expD > in the form "yyyymmdd".

EMPTY(<exp>)

Returns .T. if <exp> is blank.

EOF0
Returns .T. if the current database file is past the end-of-file.

ERROR0
Returns the number of the error which triggered an ON ERROR.

EXP(<expN>)

Returns the value of the constant e raised to the power < expN > .

FBEXTRACT(< expN 1 >, < expN2 > [, < expN3 >])

Extract characters from a flat file 1/0 buffer into a character string.

FBFILL(< expN 1 > [, < expN2 > [, < expC > [, < expN3 >)]])

Fill a flat file 1/0 buffer with a pattern of characters.

FBINSERT(< expN 1 >, < expN2 >, < expC > [, < expN3 > J
Insert data from a character string into a flat file 1/0 buffer.

Chapter 5: TDBS Functions

FBMOVE(< expN1 >, < expN2 >, < expN3 > [, < expN4 >
[, < expNS >]]

Move data from one flat file 1/0 buffer to another.

FCOUNT0

Returns the number of fields in the current work area.

FDATE(< expC >)

Returns date of file name given in < expC >.

FERROR([< expN >])

Returns error code from flat file 1/0 operation.

FIELD(< expN >)

Returns the text name of the field in the current database file which
corresponds to the numeric position of < expN >.

FILE(< expC >)

Returns .T. if the file name given in < expC > exists.

FINDFIRST(< memvar1 >, < expC1 > [, < expC2 >
[, < memvar2 >]])

Returns name of first file matching skeleton in < expC > .

FINDNEXT(< memvar1 > [, < memvar2 >])

Returns name of next file matching previous FIND FIRST.

FKLABEL(< expN >)

Returns the text name assigned to function key < expN >.

FKMAX0

Returns the maximum number of programmable function keys.

FLEN(<expN>)

Returns buffer length for an open flat file.

FLOCK0

Attempts to lock a file and returns a logical value based on the
success or failure of the attempt.

5-5

Chapter 5: TDBS Functions

5-6

FLOOR(< expN >)

Returns integer number equal to or next lower than < expN >.

FMAXLEN0

Returns maximum flat file 1/0 buffer which can be allocated.

FOUND0

Returns a logical value based on the success or failure of the last
SEEK, FIND, LOCATE, or CONTINUE command.

FSIZE(< expC >)

Returns size of file name given by < expC >.

FTIME(< expC >)

Returns time stamp of file name given by < expC >.

GETENV(< expC >)

Returns the contents of the DOS environment variable < expC >.

GETLPT(< expn >)

Requests access to LPT < expN >. Returns true (.T.) if granted.

HARDCR(< expC >)

Returns string with any Ox8D characters changed to OxOD.

HEX2DEC(< expC >)

Returns number which is < expC > converted from hexadecimal.

HOMEPATH0

Returns a string with the home path (from Opt Data).

IIF(<expL>,<exp true>,<exp false>)

Evaluates < expL > . If it evaluates as true (. T.) returns the value
of < exp true> . If it is false (.F.) returns the value of < exp false > .

INDEXEXT0

Returns string with .NDX to indicate index file extension.

Chapter 5: TDBS Functions

INDEXKEY(< expN >)

Returns the key expression of the specified index file in the current
database work area.

INDEXORD0

Returns a numeric value of the controlling index within the current
list of index files.

INKEY([< expN >])

Reads and returns numeric value of the next keycode in the
typeahead buffer.

INT{< expN >)

Returns < expN > with any fractional portion truncated.

ISALPHA(< expC >)

Returns .T. if the first character of < expC > is alphabetic.

ISINT(< expN >)

Returns .T. if < expN > is an integer value.

ISLASTDAY(<expD>)

Returns .T. if < expD > is the 1st day of the month.

ISLEAP(< expD >)

Returns .T. if < expD > is a leap year.

ISLOWER(< expC >)

Returns .T. if the first character of < expC > is lower case.

ISSHARE(< expC >)

Determine if a database or mailbox is currently being shared.

ISSTATE(<expC>)

Returns . T. if < expC > is a valid post office state abbreviation.

ISUPPER(< expc >)

Returns .T. if the first character of < expC > is upper case.

5-7

Chapter 5: TDBS Functions

5-8

LASTDAY (< expD >)

Returns date which is the last day of the month of < expD > .

LASTKEY0

Returns the numeric ASCII value of the last key which has been
read and processed byTDBS.

LEFT(< expC >, < expN >)

Returns < expN > characters from the left of < expC >.

LEN(<expC>)

Returns the number of characters in < expC >.

LJUST(< expC >)

Returns a copy of < expC > which is left justified.

LOG(< expN >)

Returns natural logarithm of < expN > .

LOWER(< expC >)

Returns < expC > converted to lower case.

LTRIM(< expC >)

Returns < expC > with any leading blanks removed.

LUPDATE0

Returns the last date the current database was modified.

MAX(< expN1 >, < expN2 >)

Returns the greater of < expNl > or < expN2 >.

MESSAGE([< expN >])

Returns a character string with the text of the error which caused
an ON ERROR condition. If < expN > is given, returns the text
for the specified error code.

MIN(<expN1 >,<expN2>)

Returns the lesser of < expNl > or < expN2 >.

Chapter 5: TDBS Functions

MOD(<expN1 >,<expN2>)

Returns < expNl > modulo < expN2 >. For positive numbers this
is the remainder of < expnl > divided by < expN2 >.

MONTH{< expo>)

Returns the month of < expD > as a numeric value.

NDX(< expN >)

Returns character string with the name of index file < expN >.

NEWMAIL0

Returns .T. if new mail received since last NEWMAIL() function.

NEXTKEY0

Returns the numeric ASCII code of the next key pending in the
keyboard typeahead buffer.

NMYUSERS0

Returns the number of users of this TDBS program.

NUSERS0

Returns the number of users of any TDBS program.

OPTDATA0

Returns the TBBS menu Opt Data field as a string.

oso
Returns the name of the operating system.

PCOL0

Returns current numeric column of printer.

PROCUNE0

Returns the current TDBS source code line number.

PROCNAME0

Returns the name of the current procedure as a character string.

PROW0

Returns current numeric row (line) of printer.

5-9

Chapter 5: TDBS Functions

5-10

RAT(<expC1 >,<expC2>)

Returns starting position of the LAST occurrence of < expCl >
within < expC2 > as a numeric value.

READKEY0

Returns number indicating the key which ended the last full screen
READ, and if any data was changed during the read.

RECCOUNT0/LASTREC0

Returns number of records in the current database file.

RECNO0

Returns current record number of the current database file.

RECSIZE0

Returns the record length of the current database file.

REPLICATE(< expC >, < expN >)

Returns a string made up of < expC > repeated < expN > times.

RIGHT(< expC >, < expN >)

Returns < expN > characters from the right of < expC > .

RJUST(< expC >)

Returns a copy of < expC > which is right justified.

RLOCK0/LOCK0

Attempts to lock the current record and returns a logical value
indicating the success or failure of the lock attempt.

ROUND(<expN1 >,<expN2>)

Returns the value of < expNl > rounded to < expN2 > decimals.

ROW0

Returns the number of the current screen row position.

RTRIM(< expC >)/TRIM(< expC >)

Returns a copy of < expC > with any trailing blanks removed.

Chapter 5: TDBS Functions

SECONDS0

Returns time of day as hundredths of seconds since midnight.

SELECTO
Returns the currently selected work area number.

SETPRC(<expN1 >,<expN1 >)

Set the internal PROW0 and PCOL() values.

SOUN DEX(< expC >)

ReturnsSOUNDEXcodefor <expC> .

SPACE(< expN >)

Returns a character string of < expN > spaces.

SQRT(< expN >)

Returns the square root of a positive < expN > .

STATENAME(< expC >)

Returns a string which is the full state name for the post office state
abbreviation in < expC >.

STR(< expN 1 > (, < expN2 > (, < expN3 >]))

Returns a character string with the value of < expNl > converted
to numbers. Optionally fixed at < expN2 > characters in length
and < e:,,.-pN3 > decimal places.

STUFF(< expC1 >, < expN 1 >, < expN2 >, < expC2 >)

Returns string which is a copy of < expCl > with < expN2 >
characters beginning at character < expNl > replaced with
<expC2>.

SUBSTR(< expC >, < expN1 > (, < expN2 >])

TIMEO

Returns a string of < expN2 > characters extracted from < expC >
starting at position < expNl > . The length may be limited to a
maximum of < expN2 > characters.

Returns system time of day as a string of the form "hh:mm:ss".

5-11

Chapter 5: TDBS Functions

5-12

TRANSFORM(< exp>,< expC >)

Returns a string which is < exp > converted according to the
format PICTURE specified by < expC > .

TYPE(< expC >)

Returns the type of an expression, memory variable, or field.

UANSI0

Returns .T. if the user profile has ANSI = YES.

UAUTH(< expN >)

Returns string with the user's A(< expN >) authorization flags.

UIBM0

Returns .T. if the user profile has IBM GRAPHICS = YES.

ULOCATION0

Returns a string with the user's location.

UMORE0

Returns the number of lines per page from the user profile.

UNAME0

Returns a string with the user's logon id.

UNOTES0

Returns a string with the user's userlog notes field.

ULINEO

Returns a single character string with the line identifier (0 - W).

ULREPLACE(<field>[,< expN >],<exp>)

Updates named fields in the user's TBBS userlog record.

ULPEEK(<offset>,< type> [, < length>])

Allows reading any field in the user's TBBS userlog record.

ULPOKE(<offset<,< type> [,<length>])

Allows updating any field in the user's TBBS userlog record.

Chapter 5: TDBS Functions

UPDATED0

Determines if the last READ updated any fields.

UPPER(< expC >)

Returns a copy of < expC > converted to upper case.

UPRIV0

Returns a number with the user's PRIVilege value.

USING([< expN >])

Determine which lines are currently using a shared work area.

UWIDTH0

Returns the number of characters per line from the user profile.

VAL(<expC>)

Returns a number which is < expC > converted from text.

VERSION0

Returns current version number ofTDBS as a string.

WAIT4FLOCK([< expN >])

Waits for File Lock, key press, or < expN > seconds. Returns .T.
if file lock was successful.

WAIT4LPT(< expN1 > [, < expN2 >))

Waits for access to LPT<expNl>, key press, or <expN2>
seconds. Returns .T. ifLPT<expNl> was acquired.

WAIT 4MAIL([< expN >))

Waits for new mail, key press, or < expN > seconds. Returns .T. if
new mail was received.

WAIT4RLOCK([< expN >))

Waitsforrecordlock,keypress,or <expN> seconds. Returns.T.
if record lock was successful.

YEAR(< expD >)

Returns the year from < expD > as a numeric value.

5-13

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Examples:

Compatibility:

5-14

II
ABS()

ABS(< expN >)

Finds the absolute value of < expN >.

< expN > is any numeric expression.

A numeric value.

Usage:

11

ABSO returns the absolute value of < expN >. This means that if
< expN > evaluates to a positive number or zero, that number is
returned. If < expN > evaluates to a negative number, then the sign
is removed and the magnitude is returned as a positive number.

a= 12
b = 20
? ABS(a-b) && Result: 8
? ABS(b-a) && Result: 8
? ABS(O) && Result: 0
? ABS(-25) && Result: 25
? ABS(25) && Result: 25

dBASE Standard, no extensions

Syntax:

Purpose:

Arguments:

Return:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

ACOPYQ

ACOPY (< array1 >, < array2 > [, < expN 1 > [, < expN2 >
[, < expN3 >]]])

Copy elements from one array to another.

< arrayl > is the source array.

< array2> is the destination array.

< expNl > is the starting element position in the source array.

< expN2 > is the number of elements to copy from the source array
beginning with < expNl >.

< expN3 > is the starting element position in the target array.

A logical .F.

PRIVATE one[S], two[5]
I = 1
DO WHILE I<= 5

one[I] = I
ENDDO
dummy=ACOPY(one,two)

ADEL(), AFIELDS(), AFILL(), AINS(), ASCAN(), ASORT()

TDBS extended, no dBASE equivalent, Clipper compatible.

5-15

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-16

II ADEL()

ADEL(< array>,< expN >)

Deletes an array element.

<array> is the name of the target array.

< expN > is the index of the element to delete.

A logical .F.

11

The contents of the specified array element are discarded and all
elements from that position to the end of the array are shifted up
one element. The last element in the array becomes undefined until
a new value is assigned to it.

PRIVATE array[S]
array[l] = 1
array[2) = 2
array[3J = 3
? array[2] && Result: 2
dumm.y=ADEL(array,2)
? array[2J && Result: 3

ACOPY(), AFIELDS(), AFILL(), AINS(), ASCAN(), ASORT()

TDBS extended, no dBASE equivalent, Clipper compatible.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II
AFIELDS()

AFIELD$(< array1 > [, < array2 > [, < array3 >
[, < array4 >]]])

II

Fills a series of arrays with field names, field types, field lengths,
and field decimals.

< arrayl > is the array to fill with field names. Each element is
character type.

< array2 > is the array to fill with the type of fields in < arrayl > .
Each element is character type.

< array3 > is the array to fill with widths of fields in < arrayl > .
Each element is numeric type.

< array4 > is the array to fill with the number of decimals defined
for the fields in < arrayl > . Each element is numeric type. If the
corresponding field is not numeric, the element is set to zero.

An integer numeric value.

AFIELDSQ returns the number of fields or the length of the
shortest array, whichever is less.

AFIELDSO fills a series of arrays with the information normally
placed in a STRUCTURE EXTENDED file. This information is
taken from the current work area. If there is no database currently
in use, AFIELDSQ returns a zero.

To select some attributes while skipping others pass a dummy
variable. For example to obtain field names and lengths only:

PRIVATE fname[FCOUNT()J, flen[FCOUNT()]
dwmny = ""
nfld = AFIELDS(fname, dwmny, flen)

TDBS extended, no dBASE equivalent, Clipper compatible.

5-17

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-18

II AFILL{)

AFILL(<array>,< exp> [, < expN 1 > [, < expN2 >]])

Fills an array with a specified value.

< array> is the array to fill.

11

< exp> is the value to place in each array element. It may be an
expression of any data type.

< expNl > is the position of the first element to fill. If this argu
ment is omitted, filling begins with element 1.

< expN2 > is the number of elements to fill. This argument is
optional, and if it is omitted all elements from the starting point to
the end of the array are filled.

A logical .F.

< exp> is evaluated only once, at the beginning of the instruction.
Thus it is not possible to use AFILL to place different (e.g. in
crementing or decrementing) values in different elements.

PRIVATE alogic[lS]
dwmny = AFILL(alogic, .T.)
dwmny = AFILL(alogic, .F., 5, 10)

Elements 1 through 4 are filled with .T. and elements 5 through 15
are filled with .F. in this example.

ACOPY(), ADEL(), AFIELDS(), AINS(), ASCAN(), ASORT()

TDBS extended, no dBASE equivalent, Clipper compatible.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
AINS()

AINS(<array>,< expN >)

Inserts an undefined element into an array.

< array> is the array into which a new element is inserted.

< expN > is the position to insert the new element.

A logical .F.

ii

The newly inserted position remains undefined until a new value is
assigned to it. After the insertion, the last element is discarded and
all elements after the insertion point are shifted up one position in
the array.

DECLARE array[3)
array[l] = 1
array[2] = 2
array[3] = 3
? array[2] && Result: 2
dummy= AINS(array, 2)
? array[3] && Result: 2
? type("array[2]") && Result: u

ACOP¥'Q, ADELQ, AFIELDSQ, AFILLQ,
ASCANQ, ASORTQ

TDBS extended, no dBASE equivalent, Clipper compatible.

5-19

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-20

II
ALIAS()

II
ALIAS([< expN >])

Obtains the <alias> name for a work area.

< expN > evaluates to the number (1-10) of the desired work area.

A character string.

ALIAS returns the name of the alias of the specified work area. If
the specified work area has no open database file, then a null string
is returned. If no work area number is given, then the currently
selected work area is assumed.

SELECT 1
USE Cust
SELECT 2
USE Invoice ALIAS Orders
? ALIAS() && Result: ORDERS
? ALIAS(l) && Result: CUST

SELECT, USE, SELECT()

TDBS Extended, no dBASE equivalent

Syntax:

Purpose:

Arguments:

Returns:

Usage:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
ASCANQ

ASCAN(<array>,< exp> [, < expN 1 > [, < expN2 >]])

Scans an array for a specific value.

< array?' is the array to scan.

<exp> is the expression to scan for and may be any data type.

11

< expNl > is the first element to scan. If it is omitted, scanning
begins with element 1.

< expN2 > is the number of elements to scan. If it is omitted, all
elements from the starting element to the end of the array are
scanned.

An integer numeric value.

ASCANO searches the specified array and returns the numeric
element position of the first matching array element. If no element
matches <exp> then ASCAN() returns a zero.

Note that ASCAN() is sensitive to the setting of EXACT. If SET
EXACT is on, then the element must match the result of <exp>
character for character if < exp> is character type.

ACOPYO, ADEL(), AFIELDS(), AFILL(), AINS(), ASORT()

TDBS extended, no dBASE equivalent, Clipper compatible.

5-21

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-22

II ASORT()/ADSORT()
11

ASORT/ADSORT(<array>[,< expN 1 > [, < expN2 >]])

Sorts the contents of an array in either ascending or descending
order.

< array> is the array to sort.

< expNl > is the first element to sort. If it is omitted, sorting begins
with element 1.

< expN2 > is the number of elements to sort. If it is omitted, then
all elements from the starting element to the end of the array are
sorted.

A logical .F.

All elements in the range of the array being sorted must be the same
data type. If they are different data types, they are first sorted by
data type (C, D, N, L) and then sorted within each category. Note
that character string sorts are NOT affected by the setting of SET
EXACT but are always character for character with shorter but
equal strings sorting first.

DECLARE array[3]
array[l] = "AA"

array[2] = "CC"
array[3] = "BB"
dummy= ASORT(array)
? array[l] && Result: "AA"

? array[2] && Result: "BB"
? array[3] && Result: "CC"

ACOPYQ, ADEL(), AFIELDS(), AFILL(), AINS(), ASCAN()

TDBS extended, no dBASE equivalent, Clipper compatible.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II ASC() II
ASC(< expC >)

Convert character type to numeric ASCII equivalent.

< expC ?' is the character expression to convert.

A numeric value in the range O to 255.

The first character of the string is returned as its numeric ASCII
value. If <expC> is longer than one character, ASC ignores all
but the first character. You may use ASC where you need to do
calculations on the ASCII value of a character.

? ASC("A") && Result: 65
? ASC ("Anchor") && Result: 65
? ASC("*") && Result: 42
? ASC("Z")-ASC("A") && Result: 25
? ASC("") && Result: 0

CHR(), INKEY(), NEXTKEY(), LASTKEY()

dBASE standard, no extensions.

5-23

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Example:

See Also:

Compatibility:

5-24

II
AT(}

11

AT(< expC1 >, < expC2 >)

Locates the first instance of one character string in another.

< expCl > is the string to search for.

< expC2 > is the string to be searched.

A numeric value.

If string < expCl > is contained in string < expC2 >, the AT()
function will return the starting character position of the substring.
If the string is not found, then a zero is returned.

Note: If you only need to know if one string is contained in another,
you may use the$ operator. Use AT() when you need to know
where the string is located.

FNames = "JoeLarrySteveBobFrank"
? AT("Bob",FNames) && Result: 14
? AT("a","abcde")
? AT("A","abcde")

SUBSTR()

dBASE standard, no extensions

&& Result: 1
&& Result: 0

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

l.!::=::11 ==B=OF=() =~II ·
BOFO

Determine if a skip past the beginning of file was attempted.

A logi~ value.

BOF() returns a .T. only when you attempt to move the record
pointer before the first logical record in the current database file.
When this happens, the record pointer is positioned at the first
logical record in the file. If the current database contains no
records, then both BOF() and EOF() are true.

An attempt to skip backwards again after BOF() reports true will
cause a run time error. SKIP is the only command which can set
BOF() true.

USE customer
GO TOP

? RECNO() && Result: 1
? BOF() && Result: .F.
SKIP -1
? RECNO() && Result: 1
? BOF() && Result: .T.

SKIP,EOF()

dBASE standard, no extensions.

5-25

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-26

II
CAP FIRST{)

11

CAPFIRST(< expC >)

Capitalize the first character of a string.

< expC > is the string to capitalize.

A character string.

CAPFIRST will return a copy of < expC > with the first character
forced to upper case. The remainder of the string is returned as it
was in <expC>.

var= "JOHN"
? CAPFIRST(LOWER(var)) && Result: John
? CAPFIRST("abcde") && Result: Abcde
? CAPFIRST("Billy ray") && Result: Billy ray

UPPER(), LOWER()

TDBS extended, no dBASE equivalent

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II CDOW()

CDOW(<expo>)

Return the day of the week in text for a given date.

< expD_> is the date for which to find the day of the week.

A character string.

II

CDOW() returns the name of the day of the week with the first
letter in upper case, and the rest of the string in lower case. The
maximum returned string length is 9 characters for "Wednesday".

? Date()
? CDOW(DATE())

&& Result: 07/17/89
&& Result: Monday

CMONTH(), CTOD(), DA TE(), DAY(), DOW(), DTOC,
DTOS(), MONTH(), YEAR()

dBASE standard, no extensions.

5-27

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Examples:

See Also:

Compatibility:

5-28

II
CEILING()

II
CEILING(< expN >)

Finds the integer which is equal to or higher in value for < expN > .

< expN > is the numeric expression to find the CEILING of.

An integer numeric value.

Note that the CEILING of a number is dependent on sign as well
as magnitude. The CEILING of a positive number which is not an
integer, is the next highest integer number. The CEILING of a
negative number which is not an integer is the next larger valued
number which is the next smaller magnitude negative number.

? CEILING(l.5) && Result: 2
? CEILING(-1.5) && Result: -1
? CEILING(l.O) && Result: 1
? CEILING(-1.0) && Result: -1
? CEILING(0.333) && Result: 1
? CEILING(-0.333) && Result: 0

FLOOR(), INT()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II CHR()

CHR(< expN >)

Converts an ASCII numeric number to a character.

< expN? is the numeric value to convert to a character.

A character value.

II

CHR() returns the character corresponding to the ASCII value of
< expN > . If < expN > is not in the range 1 to 255, a null string is
returned.

CHR() allows embedding non-printable characters in strings.
These may be used to explicitly output ANSI screen control sequen
ces, printer control sequences, ring the user's bell etc.

? CHR(72) && Result: H
? CHR(61) && Result: =
? REPLICATE(CHR(61),10) && Result: ==========
? CHR(ASC("A")+62) && Result: a

? CHR(7) && Result: bell rings

ASC(), INKEY()

dBASE Standard, no extensions.

5-29

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Examples:

See Also:

Compatibility:

5-30

II CMONTH{)

CMONTH(< expD >)

Returns string with text month from the date < expD >.

< expD > is the date from which to extract the month.

A character string.

11

CMONTH() returns the name of the month from a date value. The
first letter is upper case, the rest are lower case. The maximum
length of the returned string is 9 characters for "September".

? CMONTH(DATE()) && Result: July
? CMONTH(DATE()+45) && Result: August
? SUBSTR(CMONTH(DATE(),1,3) && Result: Jul

CDOW(), CTOD(), DA TE(), DAY(), DOW(), DTOC(),
DTOS(), MONTH(), YEAR()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II COL() II
COLO

Returns current screen column position.

An integer numeric value.

COLO is used when you want to position the cursor relative to the
current position. With COL(), and its companion function ROW()
you may write position independent screen displays.

var= "This is"
@ 10,15 SAY var
@ 10,COL()+l SAY "a string"

Result: This is a string

@ •.• SAY ... GET, @ ... TO, PCOL(), PROW(), ROW()

dBASE standard, no extensions.

5-31

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

Compatibility:

5-32

II
CRTRIM(}

11

CRTRIM(< expC >)

Removes end-of-line sequence from a character string.

< expC > is a character string which has usually been read by the
Fl.READ flat file 1/0 function. CRTRIM removes the end-of-line
sequence from the string.

A character string.

The CRTRIM() function provides a quick way to remove the
end-of-line sequence from a line read by the Fl.READ command.
There are four different possible end-of-line sequences and
CRTRIMQ will detect and remove any of them. Note: If the
end-of-line sequence is encountered prior to the end of the string,
any data following the end-of-line sequence is also removed.

FLREAD Handle size Record
DispRec = CRTRIM(Record) && Remove EOL
? DispRec

This example reads a line from a file and displays it after removing
the end-of-line sequence.

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
CTOD()

II
CTOD(< expC >)

Converts a date character string to a date value.

< expC > is a character string consisting of numbers representing
the day, month, and year separated by a delimiter character. The
order of the input string is determined by the SET DATE format.
The default is AMERICAN format: "mm/dd/yy".

Century: The twentieth century is the default if only two digits are
specified for the year.

Empty date: To specify a null date use either a string of all spaces
or a string of" / / ".

A date value.

CTODQ is the only way to initialize a date variable with a constant
date. It may be used anywhere a date type value is required.

dvar = CTOD("07/17/89")
? TYPE ("dvar") && Result: D
? dvar && Result: 07/17/89
SET DATE ANSI
? dvar && Result: 89.07.17

SET DATE, CDOW{), CMONTI-1{), DATE{), DAY{),
DOW{), DTOC{), DTOS{), MONTH{), YEAR{)

dBASE standard, no extensions.

5-33

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-34

II
DATE{)

II
DATEO
Returns the current date as a date value.

A date value.

DATE() returns the current system date as a date value. Date
values are an internal format, and always the same. When a date is
converted from a date type value to text for display, the format of
the converted or displayed text is specified by the SET DATE
command.

You may perform date arithmetic only with a date variable.

? DATE()
? DATE()+30
vdate = DATE ()
? CMONTH(vdate)
SET CENTURY ON
SET DATE ANSI
? vdate

&& Result: 07/17/89
&& Result: 08/16/89

&& Result: July

&& Result: 1989.07.17

SET CENTURY, SET DATE, CDOW(), CMONTH(),
CTOD(), DAY(), DOW(), DTOC(), DTOS(), MONTH()
YEAR()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
DAV()

DAY(<expD>)

Extracts the day of the month from a date value.

< expD > is the date from which to extract the day of the month.

An integer numeric value.

11

DAY() returns a number in the range of 1 to 31 depending on the
month of < expN >. If the month is February, leap years are
accounted for and the 29th is properly returned. If < expD > is a
null or empty date, then a zero is returned.

? DATE()
? DAY(DATE())
? DAY(DATE())+l
? DAY(CTOD("l2/25/88"))

&& Result: 07/17/89
&& Result: 17
&& Result: 18
&& Result: 25

CDOW(), CMONTH(), CTOD(), DA TE(), DOW(),
DTOC(), DTOS(), MONTH(), YEAR

dBASE standard, no extensions.

5-35

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-36

II
DBF()

II
DBFO
Returns the drive and name of the current database file.

A character string.

DBF() returns a character string which contains the drive and
name of the current database file. This string will not contain the
directory information, just the drive and file name. If there is no
database file open in the current work area, a null string is returned.

USE customer
? DBF()

CLOSE DATABASES
? DBF()

&& Result: C:CUSTOMER

&& Result:

ALIAS(), FIELD(), SELECT(), NDX(), LUPDATE()
RECCOUNT(), RECSIZE()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
DEC2HEX() ii

DEC2HEX(< expN >)

Converts number to hexadecimal representation in text string.

< expN > is the number to be converted to hexadecimal.

A character string.

DEC2HEX will convert a number to a hexadecimal representation
in a character string. If < expN > results in a number with a
fractional portion, it will be truncated before conversion. That is
an equivalent of INT(< expN >) will occur.

var= 43981
? DEC2HEX(var) && Result: ABCD
? DEC2HEX(l6) && Result: 10
hvar = DEC2HEX(var)
? TYPE ("hvar") && Result: C
? hvar && Result: ABCD

HEX2DEC()

TDBS extended, no dBASE equivalent.

5-37

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-38

II
DELETED()

II
DELETEDO

Determines if the current record is marked for deletion.

A logical value.

DELETED() returns a logical true (.T.) if the current record in
the current work area is marked for deletion; otherwise false (.F.)
is returned. If no database file is open in the current work area, a
false (.F.) is also returned.

USE customer
? RECNO() && Result: 1
? DELETED() && Result: .F.
DELETE

? DELETED() && Result: • T •
RECALL

? DELETED() && Result: .F •

DELETE, RECALL, SET DELETED

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Usage:

Examples:

See Also:

Chapter 5: TDBS Functions

DESCEND()

DESCEND(< exp>)

To create and SEEK descending order indexes.

<exp>, is an expression of any data type.

DESCEND() is designed to be used in combination with INDEX
and SEEK to allow for the creation of descending order indexes.
It returns the arithmetic complement of the input expression.

To use DESCEND() in an INDEX expression, use the following
syntax:

INDEX ON DESCEND(Sales_date) TO date_dwn

To SEEK on the descending index, use the following syntax:

SEEK DESCEND(find_date)

INDEX
SEEK

5-39

Chapter 5: TDBS Functions

Syntax:

Purpose:

Options:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-40

II
DISKSPACE()

11

DISKSPACE([< expN > / < expC >])

Determine number of bytes of available space on a disk drive.

< expN > is a number indicating the drive, where 1 = A, 2 = B etc.

< expC > is a string where the first letter indicates the drive.

An integer numeric value.

DISKSPACE() returns the number of bytes of empty space on the
specified disk drive. If no drive is specified, then the space available
on the HOMEPATH drive is returned.

Filesize = 25000
IF DISKSPACE() < Filesize

? "Not enough disk space available"
ENDIF

HOMEPATH()

dBASE standard plus extensions.

Syntax:

Purpose:

Returns:

Usage:

Compatibility:

Chapter 5: TDBS Functions

II DOTBBS() II
DOTBBS0
Detects whether the underlying TBBS will support the DOTBBS
command.

A logical value.

The DOTBBS command is not supported by all versions ofTBBS
which will run TDBS 1.2. This function will return .T. if the
DOTBBS command can be used, and .F. if it cannot be.

TDBS extended, no dBASE equivalent.

5-41

Chapter 5: TDBS Functions

Syntax: .

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-42

II
DOW()

II
DOW(< expD >)

To extract the day of the week from a date value.

< expD > is the date for which to find the day of the week.

An integer numeric value in the range O to 7.

DOW() returns a number representing the day of the week on
which < expD > occurs. The first day of the week is considered to
be Sunday and is given the number 1. Monday is 2, Tuesday is 3,
etc. up to Saturday which is 7. If < expD > is an empty date, then
DOW() will return a 0.

? DATE() && Result:
? DOW(DATE()) && Result:
? CDOW(DATE()) && Result:
? DOW(DATE()-2) && Result:
? CDOW(DATE()-2) && Result:

dvar = DATE ()
weekof = dvar-DOW(dvar)+2
IF DOW(dvar)=l

07/17/89
2
Monday
7
Saturday

weekof = weekof-7 && Sunday= prev week
ENDIF

The above example generates the date of the Monday preceding
the date in "dvar". Note: This routine considers both Saturday and
Sunday part of the previous week. To count Sunday as part of the
week beginning with the Monday following it, remove the IF clause.

CDOW(), CMONTH(), CTOD(), DATE(), DAY(),
DTOC(), DTOS(), MONTH(), YEAR()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II DTOC() II
DTOC(<expo>)

Decode a date value into a character string formatted date.

< expD > is the date value to decode and format.

A character string.

DTOC() returns a character string formatted version of the date
in < expD >. The format is based on the current setting of the SET
DATE and SET CENTURY commands. The default format is
SET CENTURY OFF, SET DATE AMERICAN and is
"mm/dd/yy". An empty date returns" / / ".

? DATE() && Result: 07/17/89
? DTOC(DATE()) && Result: 07/17/89
? "Today is "+DTOC(DATE())

Result: Today is 07/17/89

SET CENTURY, SET DATE, CDOW(), CMONTH(),
CTOD(), DATE(), DAY(), DOW(), DTOS(), MONTH(),
TRANSFORM(), YEAR()

dBASB standard, no extensions.

5-43

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-44

II
DTOS()

II
DTOS(< expD >)

Converts date value to a standard string format which collates
properly by date in a sort.

< expD > is the date value to convert.

A character string.

DTOS() returns a string which is always 8 characters long. The
format of this string is "yyyymmdd". If < expD > is a blank date, a
string of 8 spaces is returned. This format for a date assures that
for any sorting or collating, that dates from different months and
years will always collate in a proper ascending sequence.

? DATE()
? DTOS(DATE())

&& Result: 07/17/89
&& Result: 19890717

CDOW(), CMONTH(), CTOD(), DATE(), DAY(), DOW(),
DTOC(), MONTH(), YEAR()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II
EMPTYQ

EMPTY(<exp>)

Determines whether the result of an expression is empty.

<exp> is an expression of any data type to test for empty.

A logical value.

II

EMPTY() returns a logical true (.T.) if <exp> is an empty
expression. An expression is considered empty depending on its
data type if it meets the following criteria:

Character: Null or all spaces & tabs.
Numeric: 0
Date: Null
Logical: .F.

? EMPTY(SPACE(5)) && Result: .T.
? EMPTY("") && Result: • T •
? EMPTY(0) && Result: • T.
? EMPTY(CTOD("")) && Result: .T •
? EMPTY(.F.) && Result: .T.
? EMPTY(l) && Result: .F.
? EMPTY(" a") && Result: .F.
? EMPTY(DATE()) && Result: .F.
? EMPTY(.T.) && Result: .F •

TDBS extended, no dBASE equivalent.

5-45

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-46

II
EOF()

II
EOFO

Determines if the database file in the current work area has been
moved past its end-of-file.

A logical value.

EOF() returns true (.T.) when the current database file has been
positioned past the last logical record. When EOF() becomes true,
the record pointer is positioned to RECCOUNTO + 1. Any at
tempt to move the file forward after EOF() is set, will result in an
error. If the current database file contains no records, then both
EOF() and BOF() are true.

USE customer
GOTO BOTTOM
? EOF() && Result: .F •
SKIP
? EOF() && Result: • T.

CONTINUE, FIND, WCATE, SEEK, SKIP
BOF(), FOUND(), RECCOUNT(), RECNO()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II ERROR() II
ERROR0

Returns the error code which triggered an ON ERROR condition.

An inte~er numeric value.

ERROR() returns the error code which triggered entry into an ON
ERROR handler. lithe program is not in an ON ERROR handler
then ERROR() will always return a zero. This function allows the
error handler to handle different errors properly.

ON ERROR DO ERRHAND

PROCEDURE ERRHAND
DO CASE

CASE ERROR()=108
A=INKEY(l)
RETRY

OTHERWISE

&& connect Handler

&& File Lock Error?
&& Delay 1 second
&& Retry the open

? MESSAGE() && Print Error Msg
HALT "Aborting Program ••• "

ENDCASE

ON ERROR, USE ... EXCLUSIVE, MESSAGE()

dBASE standard, no extensions.

5-47

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-48

II EXP()

EXP(< expN >)

Calculates e < expN > where e is the base of a natural logarithm.

< expN > is the number which is the power of e to calculate.

A numeric value.

11

EXP() returns the requested power of e (2.7182818285). This
value is calculated to 15.9 significant digits. This value is useful in
many mathematical calculations.

? EXP(l)
? LOG(EXP(l))

LOG()

&& Result: 2.7182818285
&& Result: 1

dBASE standard, no extensions.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FBEXTRACT()

FBEXTRACT(< expN 1 > (, < expN2 > (, < expN3 >]])

Extract data from a flat file 1/0 buffer into a string.

II

< expNl > is the handle of the flat file with which the buff er is
associated. This file must be open in binary mode.

< expN2 > is the first byte of the buffer to extract from. Any
number less than or equal to 1 is the start of the buffer. If not
specified, the first byte of the buffer is assumed.

< expN3 > is the number of bytes to extract. If not specified, all
bytes to the end of the buffer are assumed.

A character string.

FBEXTRACT() allows placing a portion of a binary flat file record
into a TDBS character string for manipulation. Note: If the result
of the extraction exceeds 254 characters, then the string"****" is
returned instead.

FOPEN Handle BINARY.FILO 2048
FBREAD Handle Size
Field3 = FBEXTRACT(Handle, 253, 25)

Bytes 253 - 2n of the 2k binary record are extracted and placed
into the character string memvar "Field3".

FBINSERT(), FBFILL(), FBMOVE()

TDBS extended, no dBASE equivalent.

5-49

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-50

II
FBFILL()

FBFILL(< expN 1 > [, < expN2 > [, < expC > [, < expN3 >]]])

Fill a binary flat file 1/0 buffer with a pattern of characters.

11

< expNl > is the handle of the flat file with which the buffer is
associated. This file must be open in binary mode.

< expN2 > is the first byte of the buffer to fill. Any number less
than or equal to 1 is the start of the buffer. If not specified, the first
byte of the buffer is assumed.

< expC > is the pattern to fill the buffer with. If not specified, the
buffer is filled with binary zeroes (CHR(0) bytes).

< expN3 > is the number of repetitions of string < expC > to fill.
If not specified, all bytes to the end of the buffer are filled.

A numeric value.

FBFILL() allows you to fill a binary flat file record with a pre-deter
mined pattern. The returned number is the next byte position in
the buffer after the fill ended. If the returned number is
FLEN(Handle) + 1 then the entire buffer was filled.

FOPEN Handle BINARY.FILO 2048
FBFILL(Handle, 1, "BLANK")

The character string "BLANK" will be repeated into the buffer until
all bytes of the buffer are filled.

FBINSERT(), FBEXTRACT(), FBMOVE()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FBINSERT()

11

FBINSERT(< expN1 > [, < expN2 > [, < expC >
[, < expN3 >)]])

Insert data from a string into a binary flat file 1/0 buffer.

< expNl > is the handle of the flat file with which the buffer is
associated. This file must be open in binary mode.

< expN2 > is the first byte of the buffer to insert into. Any number
less than or equal to 1 is the start of the buffer. If not specified, the
first byte of the buffer is assumed.

< expC > is the character string which contains the data to insert
into the binary file 1/0 buffer.

< expN3 > is the number of bytes to insert. If not specified, all
bytes to the end of the buffer are assumed.

A numeric value.

FBINSERTQ allows you to insert a character string into a binary
flat file record at the desired location. The returned number is the
next byte position in the buffer after the fill ended. If the returned
number is FLEN(Handle) + 1 then the entire buffer was filled. If
the buff er would have overflowed insertion stops and -1 is returned.

FOPEN Handle BINARY.FILO 2048
FSEEK Handle Position 0 1 && Save Position
FBREAD Handle size && Read Record
Field= ASC(FBEXTRACT(Handle, 253, 1))+3
Dummy= FBINSERT(Handle, 253, CHR(Field), 1)
FSEEK Handle Dummy Position 0 && Re-position
FBWRITE Handle size && Re-write changed data

This example adds 3 to byte 253 of the 1st record of the file.

FBEXTRACTQ, FBFILL(), FBM0VE()

TDBS _extended, no dBASE equivalent.

5-51

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

5-52

II FBMOVE()
11

FBMOVE(< expN 1 >, < expN2 >, < expN3 > [, < expN4 >
[, < expN5 >]])

Move data from one binary flat file 1/0 buffer to another.

< expNl > is the handle of the flat file with which the destination
buffer is associated. This file must be open in binary mode.

< expN2 > is the first byte of the buffer to insert moved data. Any
number less than or equal to 1 is the start of the buffer. If not
specified, the first byte of the buffer is assumed.

< expN3 > is the handle of the flat file with which the source buffer
is associated. This file must be open in binary mode.

< expN4 > is the first byte of the source buffer to move. Any
number less than or equal to 1 is the start of the buffer. If not
specified, the first byte of the buffer is assumed.

< expNS > is the number of bytes to move. If not specified, all bytes
to the end of the source buffer are moved.

A numeric value.

FBMOVEQ allows you to move data from one binary flat buffer to
another. The returned number is the next byte position in the
destination buffer after the move ended. If the returned number is
FLEN(Handle) + 1 then the entire buffer was filled. If the buffer
would have overflowed the move stops and -1 is returned.

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

FOPEN Handle BINARY.FILO 2048
FOPEN Handle2 OTHER.FIL 2 4096
Check= FBMOVE(Handle2, 1, Handle, 1, 512)

The first 512 bytes of the buffer for BINARY.FIL is moved to the
first 512 bytes of the buffer for OTHER.FIL.

FBINSERT(), FBEXTRACT(), FBFILL()

TDBS extended, no dBASE equivalent.

5-53

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-54

II FCOUNT()
II

FCOUNT0

Obtains the number of fields in the current database.

An integer value.

FCOUNT() returns the number of fields in the database file open
in the current work area. If no database file is open, a zero is
returned.

USE Sales
? FCOUNT() && Result: 5
COPY STRUCTURE EXTENDED TO Temp
USE Temp
? RECCOUNT () && Result: 5

FIELD(), TYPE(), AFIELDS()

TDBS extended, no dBASE equivalent, Clipper compatible.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II FDATE()
II

FDATE(< expC >)

Obtains the date, from the operating system, that a specified file
was last modified.

< expC > is the file character string. Drive and path may be
included, if they are absent the HOMEPATH() is assumed.

A date value.

FD A TEO returns the date of a file. If the specified file does not
exist, a blank date is returned.

? FDATE("TEST.FIL") && Print the file date
Fname = "D:\TBBS\DATA.DOC"
File Date= FDATE(Fname)
? File Date && Show date of D:\TBBS\DATA.DOC

FI'IMEQ, FSIZE(), FINDFIRST(), FINDNEXTQ

TDBS extended, no dBASE equivalent.

5-55

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-56

II FERROR() II
FERROR([< expN >])

Obtain error status of last flat file 1/0 function.

< expN > is the handle of the flat file for which error status is
desired. If absent, the status of the most recent flat file 1/0 opera
tion on any handle is returned.

A numeric value.

FERROR() returns an error code, or O if there was no error. The
error code may be converted to a text message by using the function
MESSAGE(ecode).

Ecode = FERROR() && Last Flat File FCN
Ecode = FERROR(Handle) && Last FCN for Handle
? "Error:",MESSAGE(Ecode)

FOPEN, FCREATE, FCLOSE, FSEEK,
FBREAD, FBWRITE,
FLREAD, FLWRITE, FLFIND
MESSAGE()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FIELD{}

II
FIELD(< expN >)

Returns the name of the specified field in the current database.

< expN > is the position of the desired field in the database.

A character string.

FIELD() returns the name of the specified field in a character
string. The first field in a file is one, the second is two, etc. If the
field specified is larger than the number of fields in the file, then a
null string is returned. Field names are returned in upper case.

USE customer
? FIELD(l) && Result: FNAME

ALIAS(), NDX(), SELECT(), DBF()

dBASE standard, no extensions.

5-57

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns.

Usage:

Example:

See Also:

Compatibility:

5-58

II FILE()

FILE(< expC >)

Determines whether a file exists.

< expC > is the name of the file to locate.

A logical value.

II

FILE() returns true (.T.) if the specified file exists. You may
optionally put a drive and path on the file name to locate it on any
drive in any directory. If no path is specified, TDBS looks for the
file in the HOMEP A TH directory. If the specified drive or path do
not exist, then false (.F.) is returned, and no error is generated.

? FILE("TRANSACT.PRG")
? FILE("C:\TBBS\INFOl.TXT")
? FILE("F:\FILEl.DBF")

ERASE, RENAME, HOMEPATH()

dBASE standard, no extensions.

&& Result: .T.
&& Result: .T.
&& Result: .F.

Syntax:

Purpose:

Arguments:

Chapter 5: TDBS Functions

FINDFIRSTQ

FINDFIRST(< memvar1 >, < expC1 > [, < expC2 >
[,memvar2 >]])

Locate file name and attributes of the first file in a directory which
meets the specified search criteria.

< memvarl > is the variable which will receive the DOS internal
information which is required by any subsequent FINDNEXT()
calls. You should never alter this information since it must be
presented exactly as it is to any subsequent FIND NEXT() calls.

< expCl > is a character expression containing the search
skeleton. This skeleton may contain a drive and a path and the
HOMEPATH() is used if no path is given. The file name and
extension may have wildcard characters (either • or?) to search for
files using the normal DOS wildcard rules.

< expC2 > is an optional five character string which specifies the
attributes of files which qualify for the search. The mask has the
following form:

"XXXXX" where each position contains an "X" to allow files with
that attribute, and a"." to disallow files with that attribute. The
positions equate to attributes as follows:

"X •••• " = DIRECTORY Names
" • X • •• " = VOLUME LABEL
" . . x .. " = SYSTEM file
" .. . x." = HIDDEN file
" •••• X" = READO NL Y file

Note: More than one "X" may be set to allow searches to find
multiple file types. READO NL Y and NORMAL attribute files are
always found in any search, so you must use the returned attributes
to determine if it is the type of file you are searching for.

5-59

Chapter 5: TDBS Functions

Returns:

Usage:

Example:

See Also:

Compatibility:

5-60

< memvar2 > is an optional returned six character string which
indicates the file attributes of the file name located by the search.
The six characters show an "X" if the file has the corresponding
attribute, and a "." if it does not. The returned attributes have the
following meaning:

"X ••••• " = ARCHIVE (file has been modified since backup)
" • X • ••• " = DIRECTORY name
" .. x . .. " = VOLUME LABEL
" .. . x .. " = SYSTEM file
" x." = HIDDEN file
" •••• • X" = READONLYfile

A character string.

FINDFIRSTQ returns the name of the first file that matches the
search skeleton in the form "filename.ext". If no file matches, an
empty string of zero length is returned.

Fname = FINDFIRST(Dta, "*·*", ".XXXX")
DO WHILE LEN(Fname) > 0

? Fname
Fname = FINDNEXT(Dta)

ENDDO

This example will list the names of all files in the HOMEP A THO
directory.

FDATEQ, FfIME(), FSIZE(), FINDNEXT()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FINDNEXT()

11

FINDNEXT(< memvar1 > (, < memvar2 >])

Locate file name and attributes of the next file in a directory which
meets the specified search criteria (set by FINDFIRST).

< memvarl > is the variable which received the DOS internal
information from a previous FINDFIRST or FINDNEXT. This
data contains the search mask and search attribute restrictions
along with DOS internal data so the search may be continued.

< memvar2 > is an optional returned six character string which
indicates the file attributes of the file name located by the search.
The returned attributes have the following meaning:

"X• " = ARCHIVE (file has been modified since backup)
".x " = DIRECTORY name
" •• X • •• " = VOLUME LABEL
" .. . x .. " = SYSTEM file
" x." = HIDDEN file
" ••••• X" = READONL Y file

A character string.

FINDNEXTO returns the name of the first file that matches the
search skeleton in the form "filename.ext". If no remaining file
matches, an empty string of zero length is returned.

Fname = FINDFIRST(Dta, "*·*", ".XXXX")
DO WHILE LEN(Fname) > 0

? Fname
Fname = FINDNEXT(Dta)

ENDDO

This example will list the names of all files in the HOMEPATH()
directory.

FDATE(), FTIME(), FSIZE(), FINDFIRST()

TDBS extended, no dBASE equivalent.

5-61

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Compatibility:

5-62

II
FKLABEL()/FKMAX()

FKLABEL(< expN >)

FKMAXO

Obtains the name assigned to the specified function key:

< expN > specifies the function key desired.

FKLABEL() returns a character string.

FKMAX() returns a numeric value.

11

FKLABEL() will return the name of any programmable function
keys.

FKMAX() Returns the maximum number of programmable func
tion keys.

dBASE Standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FLEN()

11

FLEN(< expN >)

Obtain the size of the buffer associated with an open flat file.

< expN > is the handle of the open flat file for which you wish to
determine the buffer size (returned by FOPEN or FCREATE).

A numeric value.

FLEN() returns the size in bytes of the buffer associated with the
specified flat file handle. 0 is returned if no buffer is associated,
and -1 is returned if the handle is invalid.

FOPEN Handle BINARY.FILO 2048
BSize = FLEN(Handle) &Result: Bsize=2048

FOPEN, FCREATE, FMAXLEN()

TDBS extended, no dBASE equivalent.

5-63

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-64

II
FLOCK()

11

FLOCK0

Locks the current database file and reports success or failure.

A logical value.

FLOCK() attempts to explicitly lock all of the records in the
current database file. If this locking attempt is successful it returns
a logical true (.T.). If the lock attempt fails a false (.F.) is returned.
The file lock remains in place until you issue either another record
or file lock attempt, issue the UNLOCK command, or close the
database. Note: any form of program termination will close the
database and release any locks.

Explicit program locks are not required in TDBS unless the ap
plication strategy requires exclusive use of a record of file for longer
than one program command. See Chapter 3 for a full discussion of
TDBS multiuser programming techniques and capabilities.

DO WHILE .NOT. FLOCK() && Wait for file lock
ENDDO
APPEND FROM Updates
UNLOCK

SET EXCLUSIVE, UNLOCK, USE ..• EXCLUSIVE,
RLOCK(), W AIT4RLOCK(), W AIT4FLOCK()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Examples:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II FLOOR()
11

FLOOR(< expN >)

Finds the integer which is equal to or lower in value for < expN > .

< expN > is the numeric expression to find the FLOOR of.

An integer numeric value.

Note that the FLOOR of a number is dependent on sign as well as
magnitude. The FLOOR of a positive number which is not an
integer, is the integer portion of the number. The FLOOR of a
negative number which is not an integer is the next smaller valued
number which is the next larger magnitude negative number.

? FLOOR(l.5) && Result: 1
? FLOOR(-1.5) && Result: -2
? FLOOR(l.0) && Result: 1
? FLOOR(-1.0) && Result: -1
? FLOOR(0.333) && Result: 0
? FLOOR(-0.333) && Result: -1

CEILING(), INT()

TDBS extended, no dBASE equivalent.

5-65

Chapter 5: TOSS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-66

II
FMAXLEN()

II
FMAXLENO

Obtain the maximum number of bytes available in the work pool
which could be assigned to a flat file 1/0 buffer.

A numeric value.

FMAXLEN() returns the maximum number of bytes that could
currently be allocated from the work pool for flat file 1/0 buffers.
Values greater than 256 are rounded down to the nearest 256 byte
boundary. Since flat file 1/0 buffers are allocated from the TDBS
work pool (see Understanding Work Pool Allocation in Chapter 2)
which is used by all file 1/0, this function tells you the available size
at this moment in your program's execution. The available size may
be increased by closing any database work areas or other flat file
which have buffers associated with them that you don't need at this
point in your program.

Bufsize = 2048
IF FMAXLEN() < Bufsuze

Bufsize = FMAXLEN()
ENDIF
FOPEN Handle TEST.TXT 10 Bufsize

This example opens a file with a buffer of 2048 bytes if possible, or
with the largest buffer that will fit if 2048 bytes are not available.

FOPEN, FCREATE, FLEN()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FOUND()

II
FOUND0

Determines whether the previous file search via FIND, SEEK,
WCATE or CONTINUE command found a match.

A logic.tl value.

FOUND() returns a logical true (.T.) if the last search command
was successful.

Any record movement other than one of the four search commands
(or an implied SEEK due to a SET RELATION) will reset the
FOUND() flag to false (.F.).

Each work area has a separate FOUND() flag, so that if a SET
RELATION is active a single search may result in a FOUND() of
true (.T.) in the current work area, and a FOUND () of false (.F.)
in a related work area.

USE customer INDEX LName
SEEK "Smith"
? FOUND(), EOF() && Result: .T • • F.
SEEK "Shelly"
? FOUND(), EOF() && Result: .F. .T.
SEEK ,"Smith"
? FOUND(), EOF() && Result: .T. .F.
SKIP
? FOUND(), EOF() && Result: .F. .F.

CONTINUE, FIND, WCATE, SEEK, SET RELATION,
EOF()

dBASE standard, no extensions.

5-67

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-68

II FSIZE()
11

FSIZE(< expC >)

Obtains the file size, from the operating system, for a specified file.

< expC > is the file character string. Drive and path may be
included, if they are absent the HOMEP A THO is assumed.

A numeric value.

FSIZE() returns the DOS size of a file. If the specified file does
not exist, a zero is returned. Note: A file may exist with a length of
zero, so an FSIZE() return of zero does not necessarily mean that
a file does not exist.

? FSIZE("TEST.FIL") && Print the file size
Fname = "D:\TBBS\DATA.DOC"
File size= FSIZE(Fname)
? File Size && Show size of D:\TBBS\DATA.DOC

FI'IME(), FDA TE(), FIND FIRST(), FIND NEXT()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
FTIME()

II
FTIME(< expC >)

Obtains the time, from the operating system, that a specified file
was last modified.

< expC > is the file character string. Drive and path may be
included, if they are absent the HOMEP A THO is assumed.

A character string.

FfIME() returns the time of a file in a string of the form
"HH:MM:SS". If the specified fde does not exist, a zero length
empty string is returned.

? FTIME("TEST.FIL) && Print the file time
Fname = "D:\TBBS\DATA.DOC"
File Time= FTIME(Fname)
? File Time && Show time of D:\TBBS\DATA.DOC

FDATE(), FSIZE(), FINDFIRST(), FINDNEXT()

TDBS extended, no dBASE equivalent.

5-69

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

Compatibility:

5-70

II
GETENV()

GETENV(< expC >)

Returns the contents of a DOS environment variable.

< expC > is the name of a DOS environmental variable.

A character string.

11

GETENV() returns the text which follows the "=" from the
requested DOS environmental variable. If the requested variable
does not exist a null string is returned.

DOS environmental variables are established by using the DOS
SET command. Note: Due to a "quirk" of the DOS SET command,
a variable with a space between the variable name and the " = " is
not considered the same as one without such a space. It is generally
good practice to never try to take advantage of this quirk, and to
not place spaces in the DOS SET command on either side of the
equals operator.

You may use this capability to pass configuration from the DOS
SET command to your TDBS program.

? GETENV("COMSPEC")

Result: · C:\COMMAND.COM

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II GETLPT() II
GETLPT(< expN >)

Requests access to LPT<expN>. Returns true (.T.) if granted.

< expN > is the number of the printer to request (1 to 4).

A logical value.

GETLPT() requests the specified printer. If this request is suc
cessful the printer is assigned to you and a logical true (.T.) is
returned. If the request fails a false (.F.) is returned. The printer
remains yours to use until you release it with a SET PRINTER TO
command, or by requesting a different printer. Note: any form of
program termination will also release the printer.

See Chapter 3 for a full discussion ofTDBS printer support.

IF .NOT. GETLPT(l)
? "LPTl is not available"

ELSE
EJECT

ENDIF
&& Send top of form

SET PRINTER TO, EJECT, WAIT4LPT()

TDBS extended, no dBASE equivalent.

5-71

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Result:

Usage:

Example:

Compatibility:

5-72

II
HARDCR()

II
HARDCR(< expC >)

Converts any Ox8D soft returns in a string to OxOD hard returns.

< expC > is the text string to convert.

A character string.

HARDCR turns any soft returns in a string to hard returns.

A= HARDCR(B)

Result: String A becomes a copy of string B with any Ox8D soft
returns converted to OxOD hard returns.

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Result:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
HEX2DEC()

II
HEX2DEC(< expC >)

Converts a text string hexadecimal number to a numeric value.

< expC > is the text hexadecimal number to convert.

A numeric value.

HEX2DEC interprets the < expC > string as a hexadecimal num
ber and will convert it to a 32 bit two's complement hexadecimal
number. The range is + 2,147,483,647 to -2,147,483,648.

The conversion will skip any leading blanks and begin with the first
non-blank character. It will end with either the end of the < expC >
string or the first non-hexadecimal character. Either upper or
lower case is legal for the characters A-F.

? HEX2DEC("l0")
? HEX2DEC("FFFFFFFE")
? HEX2DEC(" A test")
? HEX2DEC("lb")

DEC2HEX()

&& Result: 16
&& Result: -2
&& Result: 10
&& Result: 27

TDBS extended, no dBASE equivalent.

5-73

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

Compatibility:

5-74

II
HOMEPATH()

II
HOMEPATHQ

Returns the default path from the Opt Data menu field.

A character string.

HOMEPATH() returns the path where the .TPG program which
is executing resides. This is the default drive and directory for this
program.

Since TDBS operates in a multiuser TBBS environment, the DOS
default drive and directory have little meaning. So the
HOMEP A TH is used instead as the default. This allows you to
place a .TPG program and all associated files in a separate direc
tory. When you specify the location of the program in the Opt Data
field of the TBBS menu entry, you also specify the default directory
for all of the associated files automatically.

? HOMEPATH() && Result: C:\TDBS

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
IIF()

11

IIF(<expl>,<exp true>,<exp false>)

Returns one of two specified expressions depending on the logical
value of the given logical expression.

< expL > is the logical expression to evaluate.

< exp true> is the value to return if< expL> is true (.T.).

< exp false> is the value to return if < expL > is false (.F.).

A value of any data type.

HF() returns the value of the argument determined by the control
ling < expL > logical expression. Since < exp true> and < exp
false> may be of different types, the value returned is the type of
whichever expression is evaluated.

The expression which is not returned, is NOT evaluated. Thus any
side effects its evaluation may have had will not occur. Only the
logical expression and the expression whose value is returned are
evaluated.

IIF(Tax,(Qty*UPrice•l.06),(Qty*UPrice))

This example will add sales tax to the total price calculation only if
the logical variable "Tax" is true (.T.).

DOCASE,IF

dBASE standard, no extensions.

5-75

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Compatibility:

5-76

II
INDEXEXT()

11

INDEXEXTO

Determines the type of index file structure in use.

A character string.

INDEXEXT() always returns ".NDX" in TDBS 1.2, because
dBASE III Plus compatible index files are the only format sup
ported. This function is included to allow programs to be written
compatibly for both TDBS and other dBASE dialects.

TDBS extended, no dBASE equivalent, Clipper compatible.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II INDEXKEY() II
INDEXKEY(< expN >)

Determines the key expression of the specified index file.

< expN > is the position of the desired index file in the list of index
files in the currently selected work area. If < expN > is zero, then
the controlling index is desired regardless of its position in the list.

A character string.

INDEXKEYO returns the key expression of the specified index. If
there is no index at the specified position, the a null string is
returned.

USE CustFile INDEX Name, custNo
SET ORDER TO 2
? INDEXKEY(l) && Result: "Lname+Fname"
? INDEXKEY(2) && Result: "CustNo"
? INDEXKEY(0) && Result: "CustNo"

TDBS extended, no dBASE equivalent, Clipper compatible.

5-77

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

Compatibility:

5-78

II
INDEXORD()

11

INDEXORD0

Determines the position of the controlling index in the list of index
files for the currently selected database.

An integer numeric value.

INDEX ORD() returns the position of the controlling index in the
list of open index files for the current work area. If there is no
controlling index in the current work area, a zero is returned.

INDEXORD() is useful to record the controlling index prior to
changing it, so that it may be restored later.

USE CustFile INDEX Name, custNo
save_ord = INDEXORD()
SET ORDER TO 2
? INDEXORD() && Result: 2
SET ORDER TO save ord
? INDEXORD () && Result: 1

TDBS extended, no dBASE equivalent, Clipper compatible.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
INKEY()

11

INKEY([< expN >])

Reads a character from the keyboard typeahead buffer.

< expN > specifies the number of seconds INKEY() waits for a
key to be pressed. Specifying zero waits indefinitely for a key from
the keyboard. If < expN > is omitted, INKEY() will not wait for
a key press, but will return a key value if one was typed ahead.

An integer numeric value.

INKEY() returns the ASCII key code for a key which has been
pressed. If the typeahead buffer is empty INKEY() will return a
zero. If the time limit specified expires without a key press, then
INKEY(< expN >) will return a zero.

Function Keys: Fl returns 28, F2 through FlO return -1 thru -9

DO WHILE LASTKEY() <> 27
? "Press any key: "
key= INKEY(0)
?? "Character:",CHR(key),"ASCII code:",key

ENDDO

This routine displays the key code and repeats until Esc is pressed.

key =0
DO WHILE key=0

DO Cales
key = INKEY ()

ENDDO

This routine repeatedly calls "calcs" until a key is pressed.

SET TYPEAHEAD, LASTKEY(), NEXTKEY(), CHR()

dBASE standard, plus TDBS extensions.

5-79

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-80

II
INT()

II
INT(< expN >)

Converts a numeric value to an integer by truncating all digits after
the decimal point.

< expN > is the numeric expression to convert.

An integer numeric value.

INT does not round an expression to the nearest integer, instead it
zeroes all digits after the decimal point. This discards any fractional
portion of the number leaving only the integer portion.

? INT(1.5) && Result: 1
? INT(-1.5) && Result: -1
? INT(l.O) && Result: 1
? INT(-1.0) && Result: -1
? INT(0.333) && Result: 0
? INT(-0.333) && Result: 0
? INT(0.999999999) && Result: 0

FLOOR(), CEILING(), ROUND()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
ISALPHA()

II
ISALPHA(< expC >)

Determines if a character string begins with a letter.

< expC > is the character string to test.

A logical value.

ISALPHA returns true (.T.) if the first character of <expC> is
alphabetic. Any upper or lower case letter A to Z is considered
alphabetic. If < expC > is a null string, or begins with any non
alphabetic character, then ISALPHA returns false (.F.).

? ISALPHA("ABC") && Result: .T.
? ISALPHA("abc") && Result: .T.
? ISALPHA("l23") && Result: .F.
? ISALPHA(".NOT.") && Result: .F.

ISWWER(), ISUPPER(), LOWER(), UPPER(),
CAPFIRST()

dBASE standard, no extensions.

5-81

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-82

II ISINT()

ISINT(< expN >)

Determines if a numeric value is an integer.

< expN > is the numeric value to test.

A logical value.

11

ISINT returns true (.T.) if all digits of < expN > which follow the
decimal point are zero. If there is any significant fractional portion
to the number, then ISINT returns false (.F.).

? ISINT(1.0) && Result: • T •
? ISINT(25572) && Result: • T •
? ISINT(1. 1) && Result: .F.

? ISINT(0.3333333) && Result: ,F •

CEILING(), FLOOR(), INT(), ROUND()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II ISLASTDAY()
11

ISLASTDAY(<expo>)

Determines if a date value falls on the last day of the month.

< expD> is the date value to test.

A logical value.

ISLASTDA Y returns true (.T.) if the date given falls on the last day
of the month. Leap year is properly accounted for in this test. If
the specified date is empty or does not fall on the last day of the
month, then ISLASTDA Y returns false (.F.).

? ISLASTDAY(CTOD("0l/10/88")) && Result: .F.
? ISLASTDAY(CTOD("02/28/87")) && Result: .T.
? ISLASTDAY(CTOD("02/28/88")) && Result: .F.
? ISLASTDAY(CTOD("-09/30/88")) && Result: .T.

LASTDA Y(), ISLEAP()

TDBS extended, no dBASE equivalent.

5-83

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-84

II
ISLEAP()

II
ISLEAP(< expD >)

Determines if a date value occurs in a leap year.

< expD > is the date value to test.

A logical value.

ISLEAP returns true (.T.) if the date given falls in a leap year. If
the specified date is empty or is from a year which is not a leap year,
then ISLEAP returns false (.F.).

? ISLEAP(CTOD("0l/10/88"))
? ISLEAP(CTOD("02/28/87"))
? ISLEAP(CTOD("09/30/88"))

LASTDA Y(), ISLASTDA Y()

TDBS extended, no dBASE equivalent.

&& Result: .T.
&& Result: .F.
&& Result: .T.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
ISLOWER()

II
!SLOWER(< expC >)

Determines if the specified string begins with a lower case letter.

< expC.> is the character string to test.

A logical value.

ISWWER returns true (.T.) if the first character of the specified
string is lower case (a to z). Otherwise ISLOWER will return false.

? ISLOWER("ABC")
? !SLOWER("abc")
? ISLOWER("aBC")

&& Result: .F.
&& Result: .T.
&& Result: .T.

ISALPHA(), ISUPPER(), LOWER(), UPPER()

dBASE standard, no extensions.

5-85

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

Compatibility:

5-86

II
ISSHARE{)

II
ISSHARE(< expC >)

Determine if a work area is currently being shared.

< expC > is a character string from the USING() function to be
tested.

A logical value.

ISSHARE() returns a logical .T. if the specified < expC > has an
"X" character anywhere other than the user's own slot. Normal
usage is in combination with the USING() function to determine
if a database or mailbox is currently being shared.

USE CustFile
? ISSHARE(USING())

Results: .T. if file is shared, .F. if it is not.

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
ISSTATE{)

II
ISSTATE(< expC >)

Determines if the specified string is a valid US state abbreviation.

< expC > is the character string to test.

A logical value.

ISSTATE returns true (.T.) if the specified character string is
exactly two characters long and is a valid US post office state
abbreviation. Otherwise ISSTATE will return false (.F.). Upper
or lower case is not significant for this test.

? ISSTATE("ABC") && Result: .F.
? ISSTATE("CO") && Result: • T.

? ISSTATE ("Co") && Result: • T.

? ISSTATE ("co") && Result: • T.
? ISSTATE ("Minn") && Result: .F.

STATENAME()

TDBS extended, no dBASE equivalent.

5-87

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-88

II
ISUPPER()

II
ISUPPER(< expC >)

Determines if the specified string begins with an upper case letter.

< expC > is the character string to test.

A logical value.

!SUPPER returns true (.T.) if the first character of the specified
string is upper case (A to Z). Otherwise IS UPPER will return false.

? ISUPPER("ABC")
? ISUPPER("abc")
? ISUPPER("aBC")

&& Result: .T.
&& Result: .F.
&& Result: .F.

ISALPHA(), ISLOWER(), LOWER(), UPPER()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
LASTDAY()

LASTDAY(<expo>)

Returns the last day of the month in which < expD > falls.

< expD > is the date for which to find the last day of the month.

A date value.

11

LASTDA Y will return the date which is the last day of the month
in which < expD > falls. If < expD > is an empty date, then an
empty date is returned.

dvar = CTOD("0l/10/88")
? LASTDAY(dvar) && Result: 01/31/88
dvar = CTOD("07/17/89")
? LASTDAY(dvar) && Result: 07/31/89
dvar = CTOD("02/10/88")
? LASTDAY(dvar) && Result: 02/29/88

ISLASTDA Y()

TDBS extended, no dBASE equivalent.

5-89

Chapter 5: TOSS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-90

II
LASTKEY()

11

LASTKEYO

Returns the last key which was read byTDBS.

An integer value.

LASTKEY returns the integer ASCII key code for the last key
which TDBS read as part of any keyboard input. This can be used
to determine the last key read by an INKEY function, or an
ACCEPT, INPUT, or READ command.

If you want to know the next unread key waiting in the typeahead
buffer, use the NEXTKEY() function.

LASTKEY() is not affected by SET TYPEAHEAD O since it is
reporting the last key read, not a key waiting in the typeahead
buffer.

Function Keys: Fl returns 28, F2 through FlO return -1 thru -9

svar = var && save original value
@ 10,20 SAY "New Value: "GET var
READ
IF LASTKEY() = 27 && was exit w/Esc?

var= svar
ENDIF

&& yes, ignore any changes

This routine will roll back a memory variable change if the READ
ended with an Esc key. Normally Esc only rolls back field changes
made during a READ.

CHR(), INKEY(), NEXTKEY(), READKEY()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
LEFT()

II
LEFT(< expC >, < expN >)

Extracts the specified number of characters from the left end of a
character string.

< expC > is the character string from which to extract characters.

< expN > is the number of characters to extract.

A character string.

LEFf returns the leftmost < expN > characters of < expC >. If
< expN > is negative or zero, then a null string is returned. If
< expN > is larger than the length of < expC > then the entire
original < expC > is returned.

? LEFT("September",3)
? LEFT("Monday",3)
? LEFT("ABC",10)

&& Result: Sep
&& Result: Mon
&& Result: ABC

AT(), LTRIM(), RIGHT(), RTRIM(), STUFF(), SUBSTR()

dBASE standard, no extensions.

5-91

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-92

II
LEN()

11

LEN(< expC >/<array>)

Returns the number of characters in a character string or the
number of elements in an array.

< expC > is the character string for which to find the length.

< array> is the array to count elements in.

An integer numeric value.

LEN returns the number of characters in the character string
< expC > . If < expC > is a null string, then zero is returned.

? LEN("") && Result: 0
? LEN ("ABC") && Result: 3
? LEN("Testing 1 2 3.") && Result: 14

DECLARE my_array[lO]
? LEN(my_array)
my_array[5] = "ABC"
? LEN(my_array[5])

&& Result: 10

&& Result: 3

LTRIM(), RTRIM(), RIGHT(), LEFf(), SUBSTR(),
STUFF()

dBASE standard plus Clipper array extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II LJUST()

WUST(< .expC >)

Left justifies a character string.

< expC > is the character string to left justify.

A character string.

II

UUST returns a string of the same length as < expC > with any
leading blanks moved to the end of the string. This left justifies any
text in the input character string.

? LJUST(" ABC") && Result: ABC
? LJUST("l 23") && Result: 1 23
? LJUST(" 45")+"X" && Result: 45 X

RJUST(), LTRIM(), RTRIM(), SUBSTR(), STUFF()

TDBS extended, no dBASE equivalent.

5-93

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-94

II
LOG()

11

LOG(< expN >)

Calculates the natural logarithm of a number.

< expN > is the positive number for which to calculate the natural
logarithm.

A numeric value.

WG calculates LOGe < expN > . If this value is referred to as "X"
then the following equation is true:

ex= <expN>

where e is a mathematical constant which is approximately equal to
2.7182818285.

Note: If < expN > is zero or a negative number a numeric overflow
is returned (which prints as a row of all asterisks).

? LOG(2.7182818285) && Result: 1.0

EXP()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II LOWER(}

LOWER(< expC >)

Converts any letters in a string to lower case.

< expC > is the character string to convert to lower case.

A character string.

11

LOWER returns a copy of <expC> with any letters forced to
lower case. All other characters are left as they were.

? LOWER("STRING")
? LOWER("5 Chars")

&& Result: string
&& Result: 5 chars

!SLOWER(), !SUPPER(), UPPER()

dBASE standard, no extensions.

5-95

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-96

II
LTRIM()

II
LTRIM(< expC >)

Removes any leading blanks from the specified character string.

< expC > is the string from which to remove leading blanks.

A character string.

LTRIM returns a copy of < expC > with any leading blanks
removed.

string=" 5678"
? LEN(string)
? LTRIM(string)
? LEN(LTRIM(string))

&& Result: 8
&& Result: 5678
&& Result: 4

RTRIM(), SUBSTR(), STUFF()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II LUPDATE()
11

LUPDATEO
Returns a date value with the date the database in the current work
area was last modified.

A date value.

LUPO ATE returns the date of the last change to the current work
area database file. If no file is currently open, a blank date is
returned.

? LUPDATE() && Result: 07/17/89

dBASE standard, no extensions.

5-97

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-98

II
MAX()

II
MAX(< expN 1 >, < expN2 >)

Returns the larger of two numeric expressions.

< expNl > is the first numeric value to compare.

< expN2 > is the second numeric value to compare.

A numeric value.

MAX returns the larger of the two arguments. This allows for limit
checking a value in an expression.

? MAX(5,10)
? MAX(5*2,7)

MIN()

dBASE standard, no extensions.

&& Result: 10
&& Result: 10

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
MESSAGE()

II
MESSAGE([< expN >))

Returns the error message for a given error code.

< expN > is the error code for which the error message is desired.
If this argument is omitted, then the error message for the error
which triggered an ON ERROR condition is given.

A character string.

MESSAGE returns a character string which is the error message
corresponding to the error code given by < expN >. MESSAGE
may be used with no error code argument inside an ON ERROR
handler to return the text of the error message which caused the
ON ERROR condition to occur.

MESSAGE() is equivalent to MESSAGE(ERROR()).

ON ERROR ERRHAND

PROCEDURE ERRHAND
IF ERROR() = 108

INKEY(l)
RETRY

ENDIF
HALT MESSAGE ()

ON ERROR, ERROR()

&& connect handler

&& Delay if file lock
&& Try again

&& abort w/error msg

dBASE standard plus TDBS extensions.

5-99

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-100

II
MIN()

MIN(<expN1 >,<expN2>)

Returns the lesser of two numeric expressions.

< expNl > is the first numeric value to compare.

< expN2 > is the second numeric value to compare.

A numeric value.

11

MIN returns the lesser of the two arguments. This allows for li~it
checking a value in an expression.

? MIN(5,10)
? MIN(5*2,7)

MAX()

dBASE standard, no extensions.

&& Result: 5
&& Result: 7

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II MOD()
11

MOD(<expN1 >,<expN2>)

Returns the value of < expNl > modulo < expN2 > .

< expNl > is the number to take the modulus of.

< expN2 > is the base to take the modulus to.

A numeric value.

MOD returns the mathematical result of the calculation of
< expNl > MOD < expN2 > . If < expNl > is x, and < expN2 >
is y, then the complete formula for the modulus operation is:

x mod y = x - y L x/y J , if y ;ie O; x mod O = x.

The result of x - (x mod y) is an integral multiple of y, so you may
think of x mod y as the remainder when xis divided by y.

? MOD(J,-2) && Result: -1
? MOD(-3,2) && Result: 1
? MOD(S,3) && Result: 2

dBASE standard, no extensions.

5-101

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-102

II
MONTH()

MONTH{< expo>)

Extracts the number of the month from a date value.

< expD > is the date value from which to extract the month.

An integer numeric value.

II

MONTH returns the number of the month in the specified date
value. 1 = January, 2 = February etc. If < expD > is a blank date,
then a O is returned.

? DATE()
? MONTH(DATE())
? MONTH(DATE()+30)

&& Result: 07/17/89
&& Result: 7
&& Result: 8

CDOW(), CMONTH(), CTOD(), DATE(), DAY(), DOW()
DTOC(), DTOS(), YEAR()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
NDX()

II
NDX(< expN >)

Returns the name of the index file corresponding to < expN >.

< expN > is an integer numeric value representing the position of
the desired index file in the index file list for the current work area.

A character string.

ND X will return the name of the desired index file from the
currently selected work area. If no such index file exists, a null
string is returned. < expN > must be between 1 and 7, since only
7 index files may be open at a time.

USE Mail INDEX Names, Zips, Dates
? NDX(3) && Result: C:Dates.ndx
? NDX(2) && Result: C:Zips.ndx
? NDX(l) && Result: c:Names.ndx
? NDX(4) && Result: ANull string

SET ORDER, SET INDEX, DBF(), SELECT()

dBASE standard, no extensions.

5-103

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-104

II
NEWMAIL()

11

NEWMAIL([< expN >])

To see if a mailbox channel has received any new mail.

< expN > is a numeric value specifying the work area the mailbox
to be checked is open in. If this argument is omitted, the current
work area is assumed.

A logical value.

NEWMAIL will return a true (. T.) if the specified mailbox channel
. has received any new mail since the last NEWMAIL() or

WAIT4MAIL() function was executed. Note: When a true is
returned, the newmail flag is automatically cleared and the NEW
MAIL function will again return false (.F.) until more mail is
received in that mailbox. Each mailbox open has its own newmail
flag, and may be checked separately. If the specified work area is
not open to a mailbox, false (.F.) is returned.

IF NEWMAIL ()
? "Mail waiting ••• "

ENDIF

USE ... MAILBOX, WAIT4MAIL()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
NEXTKEV()

II
NEXTKEYO
Reads the next pending key in the typeahead buffer without remov
ing if from the buffer.

An integer numeric value.

NEXTKEY returns the ASCII key code for the next character
waiting to be read from the typeahead buffer. If there is no char
acter waiting, then a zero is returned. Since NEXTKEY does not
remove the key from the typeahead buffer, this same key will be
read by the next INPUT, ACCEPT, READ, WAIT, or INKEY
operation. If the next key in the typeahead buffer is a function key
(or multiple key Vf52/VT100 Esc sequence supported by TDBS)
NEXTKEY will report the single control key equivalent of this
sequence.

Note: SET TYPEAHEAD O will cause NEXTKEY to always
report a zero, since there is no typeahead buffer to examine.

Function Keys: Fl returns 28, F2 through FlO return -1 thru -9

? NEXTKEY() && Result: 65 (ASCII "A")
? INKEY() && Result: 65
? NEXTKEY() && Result: 66 (ASCII "B")
? LASTKEY() && Result: 65

This example assumes "AB" originally in the typeahead buffer.

SET TYPEAHEAD, INKEY(), LASTKEY()

TDBS extended, no dBASE equivalent.

5-105

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-106

II
NMYUSERS()

II
NMYUSERSQ

Returns the number of users of this TDBS program.

An integer numeric value.

NMYUSERS reports the number of users currently running this
program. This will be a number between 1 and 33.

? NMYUSERS () && Result: 3

NUSERS()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
NUSERS()

II
NUSERSQ

Returns the number of users currently running any TD BS program.

An integer numeric value.

NUSERS returns the number of users currently running a TDBS
program. This number does not include users which may be logged
on to TBBS but who are not running a TDBS program.

? NUSERS()
? NMYUSERS()

NMYUSERS()

&& Result: 5
&& Result: 2

TDBS extended, no dBASE equivalent.

5-107

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

Compatibility:

5-108

II
OPTDATA()

11

OPTDATAQ

Returns the OPT DATA string from the calling menu entry.

A character string.

This function allows a TDBS program to accept options from the
Opt Data line. The entire Opt Data line is returned, including the
TDBS program invocation. The Opt Data string which is returned
may be scanned by the TDBS program for program specific control
information.

? OPTDATA() && Result: string Prints

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II OS()
11

oso
Returns the name of the operating system.

A character string.

OS() returns the name and version of the operating system cur
rently in use.

? OS() && Result: DOS 3.30

GETENV(), VERSION()

dBASE standard, no extensions.

5-109

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-110

II
PCOL()

II
PCOL0

Returns the current printer column position.

An integer numeric value.

PCOL returns the column on the page where the next character
sent to the printer will be printed. It is used to keep track of the
printer position. Note: PCOL may become "out of sync" with the
printer if paper jams, or is not properly adjusted. PCOL is set to 0
with every top-of-form.

SET PRINTER TO LPTl
SET DEVICE TO PRINT
@ s,o SAY "Line of"

&& Assign LPTl to us
&& Route@ - SAY

@ s, PCOL()+l SAY "print"
SET DEVICE TO SCREEN

' SET PRINTER TO && Return printer

Result: Line of print

PROW(), COL(), ROW()

dBASE standard, no TDBS extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
PROCLINE{)

II
PROCUNEQ

Returns the source code line of the current command line.

An integer numeric value.

PROCLINE will return the line number of the command line within
its own source file. This command will operate correctly whether
or not the /DB option was used on the TDBS compiler command
line. It can be used to locate a debug or error message within the
program code to ease debugging.

? "Error at line",PROCLINE(),"In ",PROCNAME()

PROCNAME()

TDBS extended, no dBASE equivalent.

5-111

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-112

II
PROCNAME()

II
PROCNAMEQ
Returns the name of the current procedure level.

A character string value.

PROCNAME returns the name of the current TDBS procedure
level. It can be used to locate a debug or error message within the
program code to ease debugging. This procedure will return the
correct name regardless of whether or not the/DB option was used
on the TDBS compiler when this program was compiled.

? "Error at line",PROCLINE(),"In ",PROCNAME()

PROCLINE()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
PROW()

11

PROW0

Returns the current row (line) position of the printer.

An integer numeric value.

PROW returns the line on the page that the next output to the
printer will be printed on. It is used to keep track of paper move
ment and page sizes.

EJECT reset PROW() to zero.

USE Invoices
SET PRINTER TO LPTl
SET PRINT ON
SET CONSOLE OFF
DO WHILE .NOT. EOF()

IF PROW() > 55
EJECT

ENDIF
? custNo, PartNo, Qty
SKIP

ENDDO
SET PRINT OFF
SET CONSOLE ON
SET PRINTER TO

PCOL(), ROW(), COL()

dBASE standard, no extensions.

&& Assign LPTl
&& ?/?? to printer
&& and not to screen

&& Page the output

&& printer off
&& screen back on
&& Return printer

5-113

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Compatibility:

5-114

II RAT()

RAT(<expC1 >,<expC2>)

Find the LAST occurrence of one string within another string.

< expCl > is the character string to find.

< expC2 > is the character string to be searched for < expCl > .

An integer numeric value.

11

If < expCl > is contained within < expC2 >, RAT() returns the
starting character position of the rightmost (last) occurrence of the
string. If < expCl > is not contained within < expC2 > , then
RAT() returns a zero.

RAT() is similar to the AT() function except that it finds the last
instance of < expCl > instead of the first.

TDBS extended, no dBASE equivalent, Clipper compatible.

Chapter 5: TDBS Functions

II READKEY() II
Syntax: READKEYO
Purpose: Returns an integer corresponding to the key pressed to exit a full

screen READ command, and indicates whether changes were
made to the data during that command.

Returns: An integer numeric value.

Usage: Depending on the value returned by READ KEY(), you can deter
mine what to do next after the user exits from a full screen READ.
READKEY() returns one of two possible values from each
keypress which can terminate a READ, depending on whether any
data on the screen were altered as follows: ·

Key Pressed If no update If update

Left Arrow or Backspace (AH or AS) 0 256
Right Arrow (AD) 1 257
A Left Arrow (AA) 2 258
A Right Arrow (AF) 3 259
Up Arrow (A E) 4 2tiO
Down Arrow (AX) 5 261
Page Up (AR) 6 262
Page Down (AC) 7 263
Esc 12 268
AEND(AW) 14 270
Return(AM) 15 271

Note that if data were altered during the read, 256 is added to the
READKEY() code which is returned. The following example
shows how READKEY() might be used. In this example, if the
user types past the end of the last field the RETURN code (15) is
returned. If no changes are made, then this example skips to the
next record. If the user made any changes to the record, and then
typed past the end of the screen, the routine prompts for any further
changes. It also allows Page Up and Page Down to traverse the file.

5-115

Chapter 5: TDBS Functions

Example:

See Also:

Compatibility:

5-116

SET FORMAT TO ScrFmt
DO WHILE .NOT. EOF()

READ
STORE READKEY() TO XitKey, Modified
IF Modified< 256

Modified= 0
ELSE

XitKey = XitKey - 256
ENDIF
DO CASE

CASE XitKey = 6
SKIP -1 && Page Up
LOOP

CASE XitKey = 7
SKIP && Next Page if
LOOP && Page Down

OTHERWISE
IF Modified> 0

Decide=""
@ 23,0 "" && Position cursor
ACCEPT "More Changes?" TO Decide
IF Decide$ "Yy"

LOOP && same page again
ELSE

SKIP
LOOP

ENDIF
ENDIF
SKIP
LOOP

ENDCASE
ENDDO
SET FORMAT TO

&& Next Page

&& other exit, no chg
&& next page

&& Cancel screen fmt

ON KEY, READ, LASTKEY(), INKEY()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
RECCOUNT()/LASTREC()

II
RECCOUNT0/LASTREC0

Returns the total number of records in the currently selected
database file. This is also the last record number.

An integer numeric value.

RECCOUNT returns the number of records in a database file
without moving the record pointer. This count includes all records
regardless of the number of deleted records or any filter condition.
This may also be considered the record number of the last record
in the file. If the database is empty, a zero is returned.

USE customer
? RECCOUNT ()

DELETE
? RECCOUNT ()

RECNO(), RECSIZE()

dBASE standard, no extensions.

&& Result: 25000

&& Result: 25000

5-117

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-118

II
RECNO()

11

RECNO0

Returns the number of the current database record.

An integer numeric value.

RECNO returns the current record pointer for the database file in
the currently selected work area. If the file contains no records, the
RECNO() returns 1 and both BOF() and EOF() return true (.T.).
If the record pointer is positioned past the last record in the file,
RECNO() returns the number of records in the file plus one, and
EOF() returns true (.T.).

USE Invoices
GOTO 3

? RECNO()

SKIP
? RECNO()

GO TOP

RECCOUNT(), RECSIZE()

dBASE standard, no extensions.

&& Result: 3

&& Result: 4
&& Result: 1

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
RECSIZE()

II
RECSIZEO

Returns the number of bytes in a single record in the currently
selected database file.

An integer numeric value.

RECSIZE returns the size of a single record in the database file in
the currently selected work area. If no database file is open in the
selected work area, RECSIZE will return a zero.

USE DataFile
N~ields = x && xis number of fields
Headsize = 32 * NumField + 35
NumRecs = (DISKSPACE()-Headsize)/RECSIZE()
IF NumRecs < RECCOUNT()

WAIT "Not enough room?"
ELSE

COPY Datafile TO Backup
ENDIF

RECCOUNT(), DISKSPACE()

dBASE standard, no extensions.

5-119

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-120

II
REPLICATE()

REPLICATE(< expC >, < expN >)

Repeats a character string the specified number of times.

< expC > is the character string to be repeated.

< expN > is the number of times to repeat < expC >.

A character string.

II

REPLICA TE returns a string which consists of < expC > repeated
< expN > times. Note: if the resultant string is more than 254
characters in length, an error will result. If < expN > is negative or
zero, a null string is returned.

? REPLICATE("=",80) && Result: dbl line
? REPLICATE(CHR(219),80) && Result: bar

SPACE(), SUBSTR(), STUFF()

dBASE standard, no extensions.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
RIGHT()

II
RIGHT{< expC >, < expN >)

Returns the specified number of characters from the right end of
the specified character string.

< expC > is the string from which to extract the characters.

< expN > is the number of characters to extract.

A character string.

RIGHT returns the rightmost < expN > characters from the string
< expC > . If < expN > is negative or zero, then a null string is
returned. If < expN > is larger than the number of characters in
< expC > then the original < expC > string is returned.

? RIGHT("Abcdefg",4)
? RIGHT("A",4)

&& Result: defg
&& Result: A

LEFr(), LTRIM(), RTRIM(), SUBSTR(), STUFF()

dBASE standard, no extensions.

5-121

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-122

II
RJUST()

RJUST(< expC >)

Right justifies a character string.

< expC > is the character string to right justify.

A character string.

II

RJUST returns a string of the same length as < expC > with any
trailing blanks moved to the beginning of the string. This right
justifies any text in the input character string.

? RJUST("ABC ")
? RJUST("l 45")
? RJUST("l2 ")+"X"

&& Result: ABC
&& Result: 1 45
&& Result: 12X

UUST(), LTRIM(), RTRIM(), SUBSTR(), STUFF()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
RLOCK{)/LOCK{)

II
RLOCK0/LOCK0
Locks the current record in the current work area.

A logical value.

RWCK() attempts to lock the current record in the current work
area. It returns true (.T.) if the lock attempt succeeds. If the lock
attempt fails, or if no file is open in the currently selected work area,
then false (.F.) is returned. TDBS will attempt to lock any related
work area records if a SET RELATION is pending. In this case
either all locks succeed, or no locks result.

Only one record may be locked at a time in a work area. Attempting
to lock any record releases all locks which may be currently in place
in that work area (and any related work area) regardless of the
success or failure of the attempted lock.

Closing a file or terminating a program removes any record locks
this program has established.

See Chapter 3 for a discussion of the TD BS multiuser Transparent
File Sharing feature which usually removes the requirement for
record and file locking, as well as a discussion of explicit record and
file locking operation.

IF RLOCK()

DELETE
UNLOCK

ENDIF

SET EXCLUSIVE, USE, UNWCK, W AIT4RLOCK(),
FWCK(), WAIT4FWCK()

dBASE standard, no extensions.

5-123

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-124

II
ROUND()

II
ROUND(<expN1 >,<expN2>)

Returns a numeric value rounded to the specified number of
decimal places.

< expNl > is the number to be rounded.

< expN2 > is the number of decimal places to round to.

A numeric value ..

ROUND returns the value of <expNl> rounded to the number
of decimal places specified by < expN2 >. If the < expN2 > is
negative, then ROUND begins rounding in the integer portion of
the number as shown in the examples below. If < expN2 > is zero,
the the number is rounded to the nearest integer value.

? ROUND(l2.3456,3) && Result: 12.346
? ROUND(l2.3456,2) && Result: 12.35
? ROUND(l2.3456,l) && Result: 12.3
? ROUND(l2.3456,0) && Result: 12
? ROUND(l2.3456,-l) && Result: 10
? ROUND(l2.3456,-2) && Result: 0

SET DECIMALS, SET FIXED, INT(), FLOOR(), CEILING()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
ROW()

11

ROW0

Returns the current row position of the screen cursor.

An integer numeric value.

ROWQ returns the row (line) position of the current screen cursor.
It is commonly used for screen relative cursor addressing. Note:
The cursor position which ROW() and COLQ return is the cursor
position at the beginning of the command. Thus if the cursor moves
during the command, these values will always return the position of
the cursor at the beginning of the command.

@ 10,5 SAY "This is line"
@ ROW(),COL()+l SAY ROW() PICTURE "99"

Result: This is line 10

@ ••• SAY ... GET, COL(), PCOL(), PROW()

dBASE standard, no extensions.

5-125

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-126

II RTRIM()/TRIM()
11

RTRIM(<expC>) / TRIM(<expC>)

Removes any trailing blanks from the specified character string.

< expC > is the string from which to remove trailing blanks.

A character string.

RTRIM returns a copy of< expC> with any trailing (right most)
blanks removed.

string= "1234
? LEN(string)
? RTRIM(string)

..

? LEN(RTRIM(string))

LTRIM(), SUBSTR(), STUFF()

dBASE standard, no extensions.

&& Result: 8
&& Result: 1234
&& Result: 4

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
SECONDS()

II
SECONDS0

Returns the number of seconds since midnight.

A numeric value.

SECONDS() returns the system time as a numeric value. This
value is the number of seconds since midnight to the nearest
hundredth of a second. The range is from 0.00 to 86399.99 seconds.

? TIME()

? SECONDS()

TIME()

&& Result: 10:00:00
&& Result: 36000.00

TDBS extended, no dBASE equivalent.

5-127

Chapter 5: TDBS Functions

II SELECT()
11

Syntax: SELECTO

Purpose: Returns the currently selected work area number.

Returns: An integer numeric value.

Usage: SELECT() returns the number of the currently selected work area.

Example: SELECT 4
? SELECT() && Result: 4

See Also: SELECT, USE, ALIAS()

Compatibility: TDBS extended, no dBASE equivalent.

5-128

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Compatibility:

Chapter 5: TDBS Functions

II
SETPRC()

11

SETPRC(< expN 1 >, < expN2 >)

Sets the internal PROW() and PCOL() to the specified values.

< expNl > is the new internal value for PROW().

< expN2 > is the new internal value for PCOL().

A logical .F.

SETPRC() is useful when you send a setup string to a printer
without changing the head position. In addition this function can
be used to suppress page ejects or compensate for other special
printer conditions.

TDBS extended, no dBASE equivalent, Clipper compatible.

5-129

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

5-130

II
SOUNDEX()

II
SOUNDEX(< expC >)

Obtains a phonetic match (or "sounds like") code for a keyword.

< expC > is the character string to obtain a SOUND EX code for.

A character string.

SOUNDEXO returns a phonetic match or "sound-alike" character
code of the form "letter digit digit digit" for an input string. Strings
which produce the same soundex code will tend to sound like each
other. This four character code may be used to do "fuzzy" searches
or indexing for words or names that sound similar. The soundex
code generation rules are:

1. Leading blanks in the input string are ignored.

2. The upper case of the first letter in the string becomes the first
character of the four character output string. If the first non-blank
in the string is not a letter the code "0000" is returned.

3. After the first letter, the letters A, E, H, I, 0, U, W, and Y are
ignored in producing the code.

4. The remaining letters are assigned a code as follows:
B, F, P, and V = 1
C, G, J, K, Q, S, X, and Z = 2
DandT = 3
L=4
MandN = 5
R = 6

5. The code for the next letter is added to the output string un
less it is a repeat of the code of the previous source string charac
ter in which case it is ignored.

6. The scan stops at the first non-alpha character (including
blank) and the code is padded with ASCII "O" if it comes up short.

Example:

Compatibility:

Chapter 5: TDBS Functions

USE customer
INDEX ON SOUNDEX(Fname) TO Fnsdx
USE customer INDEX Fnsdx
SEEK SOUNDEX("Bill")
? FOUND(), Fname &&Result: .T. Bill
SEEK SOUNDEX("Billy")
? FOUND(), Fname &&Result: .T. Bill

TDBS extended, no dBASE III Plus equivalent,
Clipper similar, dBASE IV compatible.

5-131

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Result:

Usage:

Example:

See Also:

Compatibility:

5-132

II
SPACE()

SPACE(< expN >)

Returns a string of spaces of a specified length.

< expN > is the length of the string to return.

A character string.

11

SP ACE creates a string of < expN > spaces and returns it. If
< expN > is negative or zero then a null string is returned. If
< expN > is greater than 254, then an error will result.

Name= SPACE(20)
@ 10,20 SAY "Enter Name:" GET Name
READ

This example uses SP ACE() to create a character variable of the
desired length for GET and READ to operate on.

REPLICA TE()

dBASE standard, no extensions.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
SQRT()

11

SQRT(<expN>)

Returns the square root of the specified number.

< expN > is the number to extract the square root of.

A numeric value.

SQRT calculates the square root of < expN > and returns it as a
numeric value. If < expN > is negative, an error results.

? SQRT(25)
? SQRT(2)

&& Result: 5
&& Result: 1.41421356

SET DECIMAL, SET FIXED, ABS()

dBASE standard, no extensions.

5-133

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-134

II STATENAME()

STATENAME(< expC >)

Returns the full name for a US post office state abbreviation.

< expC > is the abbreviation to return the full state name for.

A character string.

11

ST A TENAME returns the full state name for the abbreviation
given by < expC >. If < expC > is not exactly two characters in
length, or is not a valid US post office state abbreviation, then a null
string is returned. The first letter of a state name is upper case, and
the remainder of the letters in the name are lower case. The case
of < expC > is not significant.

? STATENAME("Co") && Result: Colorado
? STATENAME("NY") && Result: New York
? STATENAME("Ut") && Result: Utah
? STATENAME("Minn") && Result: Null str

ISSTATE()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II STR()
11

STR(< expN1 > [, < expN2 > [, < expN3 >]])

Converts a numeric value into a text string display equivalent.

< expNl > the numeric value to convert to a character string.

< expN2 > the length of the string to return, including all digits,
decimal point, and minus sign.

< expN3 > the number of decimal places to display.

STR returns a string with the display representation of < expNl >
as a decimal number. The length argument <expN2> sets the
total length of the string to be returned, and the decimal argument
< expN3 > sets the number of decimal places to be included. If the
length is omitted, the default of 10 is used, and if decimal places is
omitted, the default is 0. If you specify the length as smaller than
that which is required to contain the number, then asterisks are
returned in the digit positions to indicate field overflow occurred.

The converted display number is rounded to the last displayed digit.

Number= 1234.56
? STR(Number)
? STR·(Number, 7, 2)
? STR(Number,8,3)
? STR(Number,6,1)

TRANSFORM(), VAL()

dBASE standard, no extensions.

&& Result: 1234.56
&& Result: 1234.56
&& Result: 1234.560
&& Result: 1234.6

5-135

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-136

II STUFF()
II

STUFF(< expC1 >, < expN1 >, < expN2 >, < expC2 >)

Combines two character strings to produce a third character string.

< expCl > is the target character string.

< expNl > is the starting position in the target for replacement.

< expN2 > is the number of characters to replace.

< expC2 > is the replacement string.

A character string.

STUFF replaces < expN2 > characters in < expCl > beginning at
position < expN2 > with the string < expC2 >. The first number
determines where to stuff the second string into the first, and the
second number determines how many characters from the first
string are overwritten. If the second number is zero or negative, no
characters are overwritten.

Target= "This is a long sentence"
Bullet= "<inserted>"
? STUFF(Target,5,0,Bullet)
* Result: This<inserted> is a long sentence
? STUFF(Target,5,0," "+Bullet)
* Result: This <inserted> is a long sentence
? STUFF(Target,6,4,Bullet)
* Result: This <inserted> long sentence

AT(), LEFf(), RIGHT(), SUBSTR()

dBASE standard, no extensions.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
SUBSTR{)

SUBSTR(< expC >, < expN1 > [, < expN2 >])

Extracts a portion of a string and returns it as a new string.

< expC > is the source character string.

< expNl > is the starting character of the substring to extract.

< expN2 > is the length of the substring.

A character string.

11

SUBSTR extracts < expN2 > characters from the string < expC >
beginning at character < expNl >. If < expN2 > is omitted, then
the string begins at < expNl > and continues to the end of the
source string.

string= "Your dog has fleas"
? SUBSTR(String,6,3) && Result: dog

Week= "Monday Tuesday WednesdayThursday"
Week= Week+"Friday "
Day= 1
DO WHILE Day<= 5

? SUBSTR(Week,(Day-1)*9+1,9)
Day= Day+l

ENDDO

Result: Monday
Tuesday
Wednesday
Thursday
Friday

AT(), RIGHT(), LEFr(), STUFF()

dBASE standard, no extensions.

5-137

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-138

II TIME() II
TIMEQ

Returns the current system time as a character string.

A character string.

TIME returns a character string in the format "hh:mm:ss". Because
TIME() returns a character string, you cannot do time arithmetic
directly. You may either convert the string to a number (as shown
in the example below) or use the SECONDS() function to get the
time directly in numeric form.

? TIME() && Result: 17:29:30

CTime = TIME ()
Seconds= VAL(LEFT(CTime,2)*3600+;

VAL(SUBSTR(CTime,4,2))*60+;
VAL(RIGHT(CTime,2))

This example converts the current time to seconds since midnight.

DATE(), SECONDS()

dBASE standard, no extensions.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
TRANSFORM()

11

TRANSFORM(< exp>,< expC >)

Returns a character string which is the value of < exp> formatted
according to the PICTURE contained in < expC >.

< exp> is an expression of any type to convert to a character string
and format.

< expC > is the PICTURE format which controls the conversion.

A character string.

TRANSFORM() takes the result of an expression of any data type
and returns a formatted character string according to the PIC
TURE functions and/or template specified in < expC >.

TRANSFORM() follows the same rules for PICTURE conver
sions as the @ ••• SAY command. See this command for details on
the PICTURE functions and template for conversion.

Since TRANSFORM returns a character string, it allows you to do
formatted output with the ? and ?? commands, and thus use for
matted output when the user does not have ANSI= YES in the
TBBS profde.

Amount= 12345.67
Picture= "999,999,999.99"
? TRANSFORM(Amount,Picture)
* Result: 12,345.67

@ ••• SAY PICTURE, STR(), WWER(), UPPER(),
UUST(), RJUST(), UANSI()

dBASE standard, no extensions.

5-139

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

Compatibility:

5-140

II
TYPE(}

II
TYPE(< expC >)

Determine the data type of the specified character expression.

< exp > is a character expression which is the name of a database
field, memory variable, or expression of any type.

A character string.

TYPE returns the type of the specified expression as follows:

C = character
N = numeric
D = date
L = logical
M = memo
A= array
U = undefined
UE = undefined array element

Arrays: References to array names will return an "A". References
to array elements will return the type of the element.

STORE 0 TO memvar
? TYPE("memvar") && Result: N

STORE "test" TO memvar
? TYPE("memvar") && Result: C
STORE DATE () TO memvar
? TYPE("memvar") && Result: D
STORE • T • TO memvar
? TYPE ("memvar") && Result: L
RELEASE memvar
? TYPE("memvar") && Result: u
DECLARE memvar[S]
? TYPE["memvar") && Result: A

dBASE standard, Clipper compatible array extension.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
UANSI()

II
UANSIO

Determine the setting of the ANSI parameter in the user profile.

A logical value.

UANSI returns a logical true (.T.) if the user profile has ANSI set
to YES. Otherwise false (.F.) is returned.

IF UANSI()
@ 5,0 SAY "Line 5 of screen"

ELSE
CLEAR
? REPLICATE(CHR(l3),4),"Line 5 of screen"

ENDIF

This is an example of using ANSI and non-ANSI output based on
the user's terminal profile.

UAUTH(), UIBM(), UWCATION(), UMORE(),
UNAME(), UNOTES(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

5-141

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-142

II UAUTH()

UAUTH(< expN >)

Returns the user's TBBS authorization flag settings.

< expN > is a number from 1 to 4 to select Al, A2, A3, or A4.

A character string.

11

UAUTH returns an 8 character long string with the specified
authorization flags. If < expN > is not 1, 2, 3, or 4 a null string is
returned.

This function allows you to pass the TBBS user authorization to
your TDBS program for whatever reasons you choose.

? UAUTH(2) && Result: x x ..

UANSI(), UIBM(), ULOCATION(), UMORE(), UNAME(),
UNOTES(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
UIBM()

II
UIBMO

Determine the setting of the IBM GRAPHICS parameter in the
user profile.

A logical value.

UIBM returns a logical true (.T.) if the user profile has IBM
GRAPHICS set to YES. Otherwise false (.F.) is returned.

Note: This is not required in general, since TBBS will automatically
convert graphics characters to ASCII equivalents if the user does
not have graphics set. However, if a program uses block fill
graphics etc. it may want to tailor the output based on this profile
setting.

IF UIBM()

? "Graphics enabled"
ELSE

? "Graphics disabled"
ENDIF

UANSI(), UAUTH(), UWCATION(), UMORE(),
UNAME(), UNOTES(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

5-143

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

5-144

II ULINE()
11

ULINEQ

Returns the line number identifier.

A character string.

ULINE() Returns a two character string with the ASCII decimal
value of the line indentifier. This will be in the range "00" to "64".
ULINE() = "00" indicates the program is running on the local
console.

Note: If this TDBS program is invoked with the /OU switch on the
Opt Data line, ULINE() will return a single character string with
the line identifier. This is in the range of0 to W to indicate lines 0
through 32. Letters are always upper case for lines 10 through 32.
Line 10 is A, 11 is B, etc. up to W. This operation is for compatibility
with older compiled programs which ran on TBBS 2.1, and CAN
NOT BE USED on systems with more than 32 lines!

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
ULOCATION()

II
ULOCATIONQ

Returns the LOCATION field of the user's userlog record.

A character string.

ULOCATION returns the LOCATION field of the current user's
TBBS userlog record as a character string.

? ULOCATION () && Result: AURORA, co

UANSI(), UAUTH(), UIBM(), UMORE(), UNAME(),
UNOTES(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

5-145

Chapter 5: TDBS Functions

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-146

II
ULPEEK()

ULPEEK(< expN 1 >, < expN2 > [, < expN3 >])

Allows reading any field in the user's TBBS userlog record.

< expNl > is the byte offset to the desired userlog field.

< expN2 > is the format type of the field as follows:

1 - Byte Numeric
2 - Word Numeric
3 - Message Number Numeric
4 - Double Word Numeric
5 - Flag String Byte ("XXXXXXXX" character format)
6 - Character string literal
7 - Date Format (3 bytes, MM DD YY in binary)

II

< expN3 > if the format type is 6, this field specifies the number of
characters in the field. It has no meaning for other types.

A numeric or character string value.

ULPEEK() allows the program to read any field within the user's
TBBS userlog record. The most common fields have their own
functions, but ULPEEK allows access to any field desired.

The following sample will read the user's expiration date:

exp_date = ULPEEK(440,7)
? type("exp_date") && Result: "D"

ULPOKE(), ULREPLACE()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Chapter 5: TDBS Functions

II
ULPOKE()

ULPOKE(< expN 1 >, < expN2 >,<exp> (, < expN3 >])

Allows changing any field within the userlog record.

< expNl > is the byte offset to the desired userlog field.

< expN2 > is the format type of the field as follows:

1- Byte Numeric
2 - Word Numeric
3 - Message Number Numeric
4 - Double Word Numeric
5 - Flag String Byte ("XXXXXXXX" character format)
6 - Character string literal
7 - Date Format (3 bytes, MM DD YY in binary)

11

< exp> is an expression of the proper type (numeric or character)
to match the specified format. This value is placed in the selected
userlog record field in the specified format.

< expN3 > if the format type is 6, this field specifies the number of
characters in the field. It has no meaning for other types.

A logical value.

ULPOKEO allows any value in the user's TBBS userlog record to
be altered. It converts <exp> from its TDBS internal format to
the specified userlog record format and stores it in the userlog
record. ULPOKEO returns true (.T.) if the update was performed,
and false (.F.) if there was an error.

Note: Altering the Name field will cause the user to not be able to
log on until the userlog is re-indexed!

Caution!! you can destroy a userlog record and cause
malfunction by incorrect use of this function!

5-147

Chapter 5: TDBS Functions

Example:

Compatibility:

5-148

Most alterations to the userlog record made with ULPOKEO will
not affect the control of the user until the next logon.

dwmny = ULPOKE(440,7,CTOD("02/02/91"))

This example sets the user's expiration date to ground hog day 1991.

TDBS extension, no dBASE equivalent.

Syntax:

Purpose:

Arguments:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II
ULREPLACE()

II
ULREPLACE(< field > [,<select>], <exp>)

Updates common TBBS userlog record fields for the current user.

< field> is the name of the userlog field as follows:

UANSI - Update ANSI profile setting (logical)
UIBMG - update Graphics profile setting (logical)
UWIDTH - update screen width setting (numeric)
UMORE- update lines per page setting (numeric)
UWCATION - update location field (character)
UNOTES - update the notes field (character)
UPRIV - update user privilege setting (numeric)
UAUTH - update Al, A2, A3, or A4 flags (character "XX XX")

<select> only has meaning if <field> is UAUTH. It is 1, 2, 3,
or 4 to select the Authorization flag set to be updated.

< exp> is the expression of the proper type which is to be placed
in the specified field of the current user's TBBS userlog record.

A logical .T.

ULREPLACEQ updates all userlog fields for which there is a
specific read function. Updates of UPRIV and UAUTH take
place immediately with this function.

dummy= ULREPLACE(ULOCATION,"Aurora, CO")
dummy= ULREPLACE(UAUTH,2,"XX •••• X.")

TDBS extension, no dBASE equivalent.

5-149

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-150

II
UMORE()

II
UMORE0

Returns the number of lines per display page from the user profile.

A numeric value.

UMORE returns the number of lines per page from the user's
TBBS profile. If the user has the -more- feature of TBBS turned
off, then a zero is returned.

TDBS does not do any automatic -more- handling. You may
program such a capability and through the use of this function
determine the number of lines to consider a display page.

? UMORE() && Result: 24

UANSI(), UAUTH(), UIBM(), ULOCATION(), UNAME(),
UNOTES(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
UNAME{)

II
UNAMEO
Returns the user's TBBS logon ID as a character string.

A character string.

UNAME returns the user's TBBS logon ID as a character string.
The form of this ID depends on the logon method in use. If the
logon method makes the ID the caller's name, then the full name is
returned.

? UNAME() && Result: PHIL BECKER

UANSI(), UAUTH(), UIBM(), ULOCATION(), UMORE(),
UNOTES(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

5-151

Chapter 5: TDBS Functions

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-152

II UNOTES{) II
UNOTES0

Returns the NOTES field from the user's TBBS userlog record.

A character string.

UN OTES returns the user's TBBS userlog record NOTES field as
a character string. If the notes field is empty, a null string is
returned.

? UNOTES() && Result: Userlog Notes Field

UANSI(), UAUTH(), UIBM(), ULOCATION(), UMORE(),
UNAME(), UPRIV(), UWIDTH()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

Compatibility.

Chapter 5: TDBS Functions

II
UPDATED()

II
UPDATEDO
Determines if a change was made to any of the pending GETS
during the last READ.

A logical value.

Each time the READ command executes, it resets UPDATEDQ
to false (.F.). Any change to a GET within the READ command
will set UPDA TEDQ to true (.T.). Thus after the READ is exited,
UPDA TEDQ will allow the program to tell if any variable or field
was altered by the READ command.

USE Accounts
mid= id
@ 1,0 SAY "Enter new ID" GET mid
READ

IF UPDATED ()
REPLACE id WITH mid

ENDIF

TDBS extended, no dBASE equivalent, Clipper compatible.

5-153

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-154

II
UPPER{)

UPPER(< expC >)

Converts any letters in a string to upper case.

< expC > is the character string to convert to upper case.

A character string.

II

UPPER returns a copy of< expC > with any letters forced to upper
case. All other characters are left as they were.

? UPPER("string")
? UPPER("S Chars")

&& Result: STRING
&& Result: 5 CHARS

ISLOWER(), ISUPPER(), LOWER()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

· Chapter 5: TDBS Functions

II
UPRIV() ii

UPRIVO

Returns the user's TBBS PRIV value as a number from O to 255.

An integer numeric value.

UPRIV returns the user's PRIV value from the TBBS userlog
record. This is number in the range O to 255. This may be used to
pass the TBBS security level to your TDBS program.

? UPRIV() && Result: 150

UANSI(), UAUTH(), UIBM(), ULOCATION(), UMORE(),
UNAME(), UNOTES(), UWIDTH()

TDBS extended, no dBASE equivalent.

5-155

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Compatibility:

5-156

II
USING()

II
USING([< expN >])

To determine which lines are currently sharing a database or
mailbox work area.

< expN > is an optional work area number. If this argument is
omitted the current work area is used.

A 65 character long string with an "X" for every user which bas this
file open, and a"." for every user who does not.

The USING() function is used to obtain a complete list of all users
currently sharing the D BF file open in the specified work area. This
function will work on either mailbox or normal database file work
areas.

This function will always return a 65 character string (to allow
future growth ofTBBS up to 64 lines plus the console) and each
character represents a line. The first character represents line 0
(the local console). If a line is sharing this file, it will show an X.
Lines which do not exist on this installation always show a period
indicating they are not sharing the file.

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II UWIDTH() II
UWIDTHO

Returns the number of characters per line from the user proftle.

An integer numeric value.

UWIDTH returns the user's configured characters per line. TDBS
does not do any automatic word wrapping. You may use this
function to write your TDBS program to adjust to different user
screen widths.

? UWIDTH() && Result: 80

UANSI(), UAUTII(), UIBM(), UWCATION(), UMORE(),
UNAME(), UNOTES(), UPRIV()

TDBS extended, no dBASE equivalent.

5-157

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-158

II
VAL()

II
VAL(< expC >)

Converts a character string number to a numeric value.

< expC > is the character string number to convert.

A numeric value.

VAL converts a character string number to a numeric value. If the
argument contains leading numeric characters followed by non
numeric characters, VAL converts the leading numeric characters
to a number. If the argument consists of leading non-numeric
characters, VAL will return a zero.

Address = "15200 E. Girard Avenue"
? VAL (Address) && Result: 15200
? VAL(" 12. 5") && Result: 12.5
? VAL(" 12 • 5") && Result: 12

SET DECIMALS, STR()

dBASE standard, no extensions.

Syntax:

Purpose:

Returns:

Usage:

Example:

Compatibility:

Chapter 5: TDBS Functions

II
VERSION()

II
VERSION0

Returns the version number of TDBS.

A character string.

VERSION returns a character string with the version of TDBS
which is running your program. This will be the version of
TDBSOM, not the compiler which compiled your program.

? VERSION() && Result: TDBS Version 1.2

dBASE standard, modified.

5-159

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-160

II
WAIT 4FLOCK{)

II
WAIT4FLOCK([< expN >])

Waits for file lock, key press, or timeout.

< expN > is the number of seconds to wait without being able to
lock the file. If omitted, then the wait is unlimited by time.

A logical value.

WAIT4FLOCK attempts to lock the file in the current work area.
If it is successful, a true (.T.) is returned. If it fails, it will automat
ically retry the operation every 500 milliseconds until it either
succeeds or one of the following occur:

• A key is pressed by the user. Note: if SET TYPEAHEAD O is
in effect, this cannot occur. The key is not read and is still in
the typeahead buffer when the WAIT4FLOCK function
returns.

• If < expN > is not zero, and < expN > seconds elapses.

This function allows an extended attempt for file locking to occur
with almost zero system impact. The normal tight loop waiting for
a file lock, leaves the program in a 100% CPU bound loop as well
as being more complex to code. While TBBS schedules this sort of
wait well, the system impact is reduced by using W AIT4FLOCK.

IF WAIT4FLOCK(60)
ZAP

UNLOCK
ELSE

? "Cannot Lock File Now"
ENDIF

UNLOCK, FLOCK(), RLOCK(), WAIT4RLOCK()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II
WAIT4LPT()

II
WAIT4LPT(< expN1 > [, < expN2 >])

Waits for printer assignment, key press, or timeout.

< expNl > is the number of the printer (1, 2, 3, or 4) which you
want assigned to your program.

< expN2 > is the number of seconds to wait without being able to
acquire the printer. If omitted, then the wait is unlimited by time.

A logical value.

W AIT4LPT requests the specified printer. If it is successful, a true
(.T.) is returned. If it fails, it will automatically retry the operation
every 500 milliseconds until it either succeeds or one of the follow
ing occur:

• A key is pressed by the user. Note: if SET TYPEAHEAD O is
in effect, this cannot occur. The key is not read and is still in
the typeahead buffer when the W AIT4LPT function returns.

• If < expN2 > is not zero, and < expN2 > seconds elapses.

This function allows an extended attempt to request a printer with
almost zero system impact. The normal tight loop waiting for a
printer leaves the program in a 100% CPU bound loop as well as
being more complex to code. While TBBS schedules this sort of
wait well, the system impact is reduced by using W AIT4LPT.

IF WAIT4LPT(l,60)
COPY File TO PRN

ELSE
? "LPTl in use by another program."

ENDIF

SET PRINTER TO, GETLPT()

TDBS extended, no dBASE equivalent.

5-161

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-162

II
WAIT4MAIL{)

11

WAIT4MAIL([< expN >])

Waits for new mai~ key press, or timeout.

< expN > is the number of seconds to wait without receiving new
mail. If omitted, then the wait is unlimited by time.

A logical value.

W AIT4MAIL waits until new mail is received in the current work
area. If it is successfu~ a true (.T.) is returned. If it fails, it will
automatically retry the operation every 500 milliseconds until it
either succeeds or one of the following occur:

• A key is pressed by the user. Note: if SET TYPEAHEAD O is
in effect, this cannot occur. The key is not read and is still in
the typeahead buffer when the W AIT4MAIL function returns.

• If < expN > is not zero, and < expN > seconds elapses.

This function allows an extended wait for received mail to occur
with almost zero system impact. A tight loop waiting for mail,
leaves the program in a 100% CPU bound loop as well as being
more complex to code. While TBBS schedules this sort of wait well,
the system impact is reduced by using W AIT4MAIL.

IF WAIT4MAIL(60)
? "New mail received"

ELSE
? "No new mail now"

ENDIF

USE ... MAILBOX, NEWMAIL()

TDBS extended, no dBASE equivalent.

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

Chapter 5: TDBS Functions

II WAIT4RLOCK()
11

WAIT4RLOCK([< expN >])

Waits for record lock, key press, or timeout.

< expN > is the number of seconds to wait without being able to
lock the record. If omitted, then the wait is unlimited by time.

A logical value.

W AIT4RWCK attempts to lock the current record in the current
work area. Ifit is successful, a true (.T.) is returned. Ifit fails, it will
automatically retry the operation every 500 milliseconds until it
either succeeds or one of the following occur:

• A key is pressed by the user. Note: if SET TYPEAHEAD O is
in effect, this cannot occur. The key is not read and is still in
the typeahead buffer when the WAIT4RLOCK function
returns.

• If < expN > is not zero, and < expN > seconds elapses.

This function allows an extended attempt for record locking to
occur with almost zero system impact. A tight loop waiting for a
record lock, leaves the program in a 100% CPU bound loop as well
as being more complex to code. While TBBS schedules this sort of
wait well, the system impact is reduced by using W AIT4RWCK.

IF WAIT4RLOCK(60)
DELETE
UNLOCK

ELSE
? "Cannot Lock Record Now"

ENDIF

UNWCK, FLOCK(), RWCK(), W AIT4FLOCK()

TDBS extended, no dBASE equivalent.

5-163

Chapter 5: TDBS Functions

Syntax:

Purpose:

Argument:

Returns:

Usage:

Example:

See Also:

Compatibility:

5-164

II
YEAR()

YEAR(< expo>)

Extracts the year from the specified date value.

< expD > is the date value from which to extract the year.

A numeric value.

II

YEAR returns the year from the specified date, including the
century digits.

? DATE()
? YEAR(DATE())

&& Result: 07/17/89
&& Result: 1989

SET CENTURY, CDOW(), CMONTH(), CTOD(), DATE(),
DAY(), DOW(), DTOC(), DTOS(), MONTH()

dBASE standard, no extensions.

I TECHNICAL

TECHNICAL

Chapter 6: Technical

How TDBS handles loss of carrier

In some applications it can be important to know exactly what
happens when a TDBS program is running and an unexpected
disconnect occurs. An unexpected disconnect is either a loss of
carrier, a user interrupt via an <Escape> key and an abort, or an
operator shutdown of the user.

An unexpected disconnect can occur between any two TDBS in
structions. It cannot occur during an instruction cycle and thus any
instruction will complete fully except in the case of a repetitive
instruction which operates on several file records. These instruc
tions (e.g. APPEND FROM, REPLACE ALL etc.) will complete
the full operation on the current database record cycle before a
disconnect is honored. Thus for this type of instruction an unex
pected disconnect is treated as though a WHILE CONNECT= .T.
condition were part of the instruction, and failed on the next record
processed after the disconnect. (Note: No such condition can
actually be coded, but repetitive instructions act as if such a condi
tion is always coded).

When an unexpected disconnect occurs in the absence of an ON
DISCONNECT command, all open files are closed and any unwrit
ten file buffers are written to disk. This makes the full effect of an
unexpected disconnect the same as if a QUIT instruction had been
placed after the last instruction executed. Thus file integrity is
always assured.

Because disconnects can occur between any two instruction cycles,
if a transaction is done in more than one REPLACE instruction the
possibility of a partial transaction exists. If a transaction is done
either with a single REPLACE command or via the@ ... GET and
READ commands, then no partial transaction is possible. Either
the entire transaction will occur properly, or it will all be discarded
if an unexpected disconnect occurs.

If explicit cleanup is required, the program may use the command
ON DISCONNECT to force execution of a cleanup routine in the
case of a disconnection.

6-1

Chapter 6: Technical

dBASE File Compatibility

6-2

The following file types used by TDBS uses are 100% compatible
with dBASE III+:

.DBF

.NDX

.MEM

.PRG

.FMT

Compatible in this case means that TDBS and dBASE III+ may
use the files interchangeably with no problems. It does not mean
that the files created by each are always identical, but that if a file
is written by one program, it may be read or modified by the other
with correct results.

This means that the same database may be modified by both TDBS
and dBASE III + programs without any file conversions required.

Caution! It is not permissible to attempt to access the
same database files with both TDBS and dBASE Ill +
at the same time via a multitasker or network. This will
result in file damagel

The following formats describe the files as they are created by
TDBS. No representation is made that these formats are identical
with those created by dBASE III+, however they are always cor
rectly interpreted by dBASE III+ as well as TDBS.

Chapter 6: Technical

TDBS .DBF File Format

The TDBS .DBF database file contains a header followed by
individual data records. Data records are always in ASCII and have
a length and format which is defined by the field descriptors in the
header. The header record begins with a 32 byte field which
contains the fixed header information as follows:

Fixed Header Format
Byte O Bit 7:

Bits4-6:
Bit 3:

Bits 0-2:

Byte 1

Bytel

Byte3

Bytes4-7

Bytes8-9

Bytes 10-11

Bytes 12-31

1 if Memo Ftle (.DBT) associated
dBASE SOL indicators. TDBS requires O here
1 if dBASE IV style memo fields. TDBS
requires a O here.
Program ID byte. TDBS puts a 03 here if it
created the file.

Year oflast update

Month of last update

Day of last update

Long Integer number of records in file

Integer number of bytes in header

Integer number of bytes per data record

Reserved. TDBS always makes 0, but allows
anything to be here. While TDBS has a file
open, it stores file sharing information in this
area in bytes 12, 13, 29, 30, and 31. These bytes
are set back to zero when TDBS closes the file.

Following this fixed portion of the header, is an array of field
descriptor entries. There is one such entry for each field defined
in the DBF file. The order of these entries corresponds to the the
order of the fields in the DBF definition.

6-3

Chapter 6: Technical

6-4

Header Field Descriptor Format
This array of field descriptors defines how each ASCII data record
in the file is to be interpreted. The structure of a 32 byte data field
descriptor entry is as follows:

Bytes0-10

Byte 11

Bytes 12-1S

Bytes 16-17

Byte 18-19

Byte20-31

Field Name String. Left Justified, Null Filled.

Field Type as follows:

N = Numeric:
ASCII digits, right justified, left padded with
spaces. Decimal point embedded per the
descriptor's decimals specification.

C = Character:
ASCII data, left justified, right padded with
spaces. Not null terminated.

L = Logical:
A single character from the set TtFfYyNn.

D = Date:
Stored as ASCII YYYYMMDD.

M = Memo:
A 10-digit ASCII number giving the block
number of the associated text within the .DBT
memo text file. (Not implemented in TDBS 1.0)

Reserved. TDBS makes 0, allows anything.

Integer field width.

Integer number of decimal places.

Reserved. TDBS makes 0, allows anything.

Chapter 6: Technical

The array of field descriptors is followed by a single ASCII carriage
return (ODh) to indicate the end of the DBF file header.

Data records are preceded by a single character which is either an
ASCII blank or asterisk (*). An asterisk indicates that this record
has been marked for deletion, while a space indicates it has not been
marked for deletion.

Following this indicator byte are the actual data bytes for each
record as described by the header field descriptor array.

TDBS .NDX File Format

Each Data Base File (DBF) may be associated with up to seven
index files. These files allow records to be located quickly based
on the key which the index files catalogs. Each ND X file contains
a unique entry for each DBF data record which it indexes. This
entry contains the associated DBF record's key data value, and its
DBF record number and is known as the "level O tear of the index
file structure.

In addition, there may be higher level index structures in an NDX
file to allow an individual key expression value to be located quickly.
These records are known as level 1 through level n leaf records. In
the dBASE III+ index structure, there may be a maximum of 16
levels of such leaves, but normally there are only a very few levels
to the structure. The number of levels indicates the worst case
search time to find a key. For example if there are a maximum of
4 levels of index structures, then any key may be located with a
maximum of 4 disk accesses. This structure is known as a modified
BTREE index structure.

An NDX file record is 512 bytes in length. Record O of an NDX
fde is the file header. It points to the top level index "tear which
begins a path that eventually leads to to the appropriate level O leaf
entry for each key.

The structure of an index file header record is as follows:

6-5

Chapter 6: Technical

Index File Header Record Format
Byte 0-3 Long Integer record number of the root leaf.

Byte4-7

Bytes 8-11

Bytes 12-13

Bytes 14-15

Byte 16

Byte 17

Bytes 18-19

Bytes 20-22

Byte23

Byte24-244

Byte 245-507

Byte 508-511

Long Integer total number of index records in
the index file.

Reserved. TDBS puts zeros, allows anything.

Integer Key Size in bytes.

Integer maximum number of keys per leaf.

Keytypeindicator.O= Char, 1=Numeric

Reserved. TDBS puts zero, allows anything.

Integer index key entry size.

Reserved. TDBS puts zero, allows anything.

1 = UNIQUE index, 0 = not UNIQUE

Index Key Expression. ASCII text, zero
terminated. (TDBS version 1.0 only allows
a simple field name here).

Reserved. TDBS puts zero, allows anything.

TDBS file sharing information while file is
open. TDBS puts zero here when the file is
closed.

Chapter 6: Technical

Index Leaf Record Format
Bytes 0-3 Long Integer number of active key entries in

this leaf

Bytes 4-n Index key entries (as many as indicated in
bytes 0-3 of this record). See below for format.

Bytes n + 1-n + 4 Long integer. Zero if this is a level O leaf. If this
is a higher level leaf, this is the record number
of the next lower level leaf record which begins
with the next greater key than the last key in
this leaf.

Bytes n + S-511 Undefined. May be anything.

Index Key Entry Format
Each index record key entry has the following format.

Bytes0-3

Bytes4-7

Bytes 8-n

Long Integer. Zero if this is a level O leaf entry.
Record number of associated index record in the
next lower level if not level O leaf entry.

Long Integer. Zero if this is not a level O leaf
entry. If this is a level O leaf entry, then this is
the DBF record number of the database record
which is associated with this key.

Key Field Data. If index field is numeric or date
this is the floating point equivalent of the index
key data value. If the index field is character
this is the ASCII key value. Note: Numeric and
Date keys are always 8 bytes long. Character
keys are the length of the field, however the
entry here is rounded up to the next four byte
multiple. The actual key text is left justified in
this field. Any resulting padding is undefined
and may be anything.

6-7

Chapter 6: Technical

TDBS .MEM File Format

6-8

The SA VE TO and RESTORE FROM commands create and read
a memory variable file. This file saves the currently visible memory
variables in the executing program. TDBS can restore a .MEM file
which is saved by dBASE III+, and dBASE III+ will properly
restore a .MEM file which is saved by TDBS. This file consists of
a series of entries, one for each memory variable which is saved.
The format of a TDBS .MEM file entry is as follows:

Bytes 0-10

Byte 11

Bytes 12-15

Bytes 16-17

Byte 18

Byte 19-31

Byte32-n

Variable Name Text. Left Justified, zero filled.
Note: If byte 0 is lAh, then this is the end of the
.MEMfile.

Bit 7 is always 1.
Bits 6-0 is the variable type as an ASCII letter.

(N = Numeric, C = Character etc.)

Reserved. TDBS puts zero, allows anything.

If Type= C, this is length (including null byte)
If Type= N, this is always 0lOCh
If Type= D, this is always 0
If Type = L, this is always 1

Variable Domain. 0 = Public, 1 = Private in main
2 = Private one level down, etc.

Reserved. TDBS puts 0, allows anything.

Variable value. If Type = Nor D, this is an 8
byte floating point number. If Type = L this is
a single byte. If Type = C this is the character
string plus a null terminator byte.

I INDEX

Index

Index

& (Macro) ...•............•...........•........•.•.... 2-30
&& (Comment) ...•.•...• 4-n
* (Comment) ...•............•.........•......•....... 4-n
*@ (Conditional Comment) ...•........ 4-77
= (Assign Value) •...................•.........................•.•..•...•••.•..••.•.....•••••••••••••• 4-145
?n? (Display Result) ..•......•...........•....•...•.... 4-14
@ ... CLEAR ..•.•...•......... 4-15
@ ... GET ..•......... 4-16
@ ... SAY ... 4-16
@ ... TO ... 4-21

A

ABS0 ... 5-14
Absolute Maximum Limits ... 2-20
ACCEPT ... 4-22
ACOPYQ .. 5-15
ADELQ ..•.•.•.. 5-16
ADSORTQ .. · 5-22
AFIELDSQ•...............•... 5-17
AFILL0 •.. 5-18
AINSQ ..•... 5-19
ALIAS0 .. 5-20
ANSI output ... 2-14
APPEND

BLANK •... 4-23
FROM .. 4-24

Arrays 2-8, 4-42, 4-88, 4-90, 5-15 - 5-19, 5-21 - 5-22, 5-92
ASCQ•.. 5-23
ASCAN0 .. 5-21

ASORT0 ··5-22
ATQ .. 5-24
Autocompile .. 1-13
Automatic Record Locking ... 3-2
AVERAGE .. 4-26

lndex-1

Index

B

Block Structured Language .. 2-12
BOFQ ... 5-25
Box Drawing .. 4-21

C

CAPFIRST0 ... 5-26
Carrier Loss ... 6-1
CASE ... 4-47
coowo ... 5-27
CEIUNGQ .. 5-28
Character Strings .. 2-7

SET EXACT .. 4-124
CHRQ ... 5-29
CLEAR

ALL .. 4-28
GETS .. 4-29
MEMORY .. 4-30
SCREEN ... 4-27
TYPEAHEAD .. 4-31

CLOSE
ALL .. 4-32
ALTERNATE ... 4-32
DATABASES ... 4-32
FORMAT ... 4-32
INDEX ... 4-32

CMONTH0 .. 5-30
COLQ ... 5-31
Command Summary .. 4-3
Command Syntax ... 4-1
Commands not supported ... 2-21
Compatibility

Commands ... 2-21
Compiler Options .. 1-9
Compiling

.TDB file .. 1-12
Autocompiling .. 1-13
Command Line Syntax .. 1-9
Conditional Compiling ... 2-5
Options ... 1-9

lndex-2

Index

CONFIG.SYS
BUFFERS = setting .. 1-8
Fl LES = Setting .. 1-8

CONTINUE .. 4-33
Control Structures ... 2-12
COPY

FILE ... 4-35
STRUCTURE .. 4-36
STRUCTURE EXTENDED .. 4-37
T0 ... 4-34

COUNT .. 4-38
CREATE ... 4-39
CREATE FROM ... 4-40
CRTRIM0 ... 5-32
CTOD0 .. 5-33

D

Data Types .. 2-7
Database File Fonnat. ... 6-3
Database Files ... 2-5
DATE0 ... 5-34
Dates

Range ... 2-7
SET CENTURY ... 4-1 09
SET DATE ... 4-114

DAY0 ... 5-35
dBASE Compatibility ... 2-3

Extended Commands .. 2-23
Extended Functions ... 2-25
File Sharing ... 2-28
Macros .. 2-30
Unimplemented Commands .. 2-21

dBASE File Compatibility .. 6-2
DBF File Format .. 6-3
DBF0 ... 5-36
DEC2HEXQ .. 5-37
DELCARE .. 4-42
DELETE ... 4-44
DELETED0 .. 5-38
DIR•... 4-45

DISKSPACE0 ··5-40

lndex-3

Index

DO
CASE•.•..•••.. 4-47
PARAMETERS .. 4-46
WHILE ... 4-48

DOTBBS .. 4-50
DOTBBS0 ... 5-41
DOW0 ···5-42
DTOCQ .. 5-43
DTOS0 .. 5-44

E

EJECT .. 4-51
ELSE .. 4-72
EMPTY0 .. 5-45
EMS Memory usage ... 1-5
ENDCASE ... 4-47
ENDDO .. 4-48
ENDIF .. 4-72
EOFQ ... 5-46
ERASE ... 4-52
ERRORQ .. 5-47
Exclusive File Use .•.................•... 3-3
EXIT ... 4-48
EXPO ... 5-48
Explicit File Locking ..•......................... 3-2
Explicit Record Locking .. 3-2
Extended Keys .. 2-16

F

FBEXTRACT0 ... 5-49
FBFILLQ ... 5-50
FBINSERTQ ... 5-51
FBMOVE0 ... 5-52
FBREAD .. 4-53
FBWRITE ... 4-55
FCLOSE•... 4-57

FCOUNT0 ···5-54
FCREATE .. 4-58
FDATEQ ... 5-55
FERRORQ .. 5-56
Field & Record Memory .. 2-17

lndex-4

Index

FIELD0 ··5-57
File Limits .. 2-29
File Sharing

Automatic Features .. 2-28
Automatic Locking•.......•... 3-2
dBASE Compatible , .. 3-7
Exclusive or Shared Use .. 3-6
Exclusive Use••... 3-3
Explicit Locking .. 3-2, 3-5
Mailboxes .. 3-2, 3-5, 3-15
ON ERROR ... 3-9
Record Locking .. 3-3
Transparent File Sharing ... 3-2, 3-4, 3-12
Transparent Locking .. 3-6
Transparent Screen Update .. 3-2, 3-13
USE ... 4-150

FILEQ ... 5-58
FIND ... 4-60

FINDFIRST0 ··5-59
FINDNEXTQ ... 5-61
FKLABEL0 ... 5-62
FKMAX0 .. 5-62
Flat File 1/0

CRTRIM0 .. 5-32
FBEXTRACT0 ... 5-49

FBFILL0 ··5-50
FBINSERT0 ··5-51
FBMOVE0 ··5-52
FBREAD .•........ ••··4-53
FBWRITE .. 4-55
FCLOSE .. 4-57
FCREATE .. 4-58
FERROR0 ... 5-56
FLFIND ... 4-61
FLREAD .. 4-63
FLWRITE ... 4-65
FOPEN .. 4-66
FSEEK ... 4-68

FLEN0 ···5-63
FLFIND .. 4-61
FLOCK0 ··5-64
FLOOR0 ··5-65
FLREAD ... 4-63
FLWRITE · ... 4-65

lndex-5

Index

FMAXLEN0 ... 5-66
FOPEN .. 4-66
FOUND0 ...•......................... 5-67
FSEEK ... 4-68
FSIZE0 .. 5-68
FTIMEQ .. 5-69
Function Keys•... 2-16
Function Summary ... 5-2

G

Get Pool Memory .. 2-18
GETENVQ .. 5-70
GETLPTQ ... 5-71
Global Glossary Memory .. 2-17
GO/GOTO ... 4-70

H

HALT .. 4-71
HARDCR0 ... 5-72
HEX2DEC0 ... 5-73
Homepath Directory ... 1-7
HOMEPATHQ .. 5-74

IF ... ELSE ... ENDIF .. 4-72
IIF0 [Immediate IF] ... 5-75
Index File Format .. 6-5
Index Files

dBASE compatibility .. 2-6
INDEX ON ... 4-73
INDEXEXTQ ... 5-76
INDEXKEY0 .. 5-77
INDEXORD0 ... 5-78
INKEYQ .. 5-79
INPUT .. 4-75
Installing TDBS .. 1-3
INTQ ...•......................... 5-80
ISALPHA0 ... 5-81

ISINT0 ···5-82

lndex-6

Index

ISLASTDAYQ •..............................•.•........•.•..•.••....•....•.•••.•.••.•.•..•••.••••.•.•••.•. 5-83
ISLEAP0 .. ,. , 5-84
ISLOWER0•.•...•.•.•••••••.•••••••.••••..•.•••..............••.•••.••••••••••.••••••••••••••• 5-85
ISSHARE0 ••.......................•.•••.•••••••••••••••.•••••••.•.••••••••••••••••••••••••••.••••••••••••• 5-86
ISSTATE0 ••.....•..................•.•••••••••••••••••••.••••••••••••••••••••••••••••....••.•.•.•••.••.•... 5-87
ISUPPER0 ••...•••......•..............•.•..•..•.••...•••••••••....•••••.•..........•....•.•...••.•.•...••• 5-88

K

Keyboard Mapping•...•..••.•...•...•..••.•.••••.••••..•••.••••••..••••••.••..••• 2-16

L

LASTDAY0 •..•..............•........•••..•.••.•.•••...•.•..•.................•..••.•.•••••••••••••.•••••• 5-89
LASTKEYQ ..•......................•.•.••..•••••••••..•.•...........................••••••••••••••••••.•••• 5-90
LASTREC0•......•......••••••••••••••.••••••.•.•••......•........•.•......•.••••••••••••••••••••.•• 5-117
LEFTQ •••.•••••••.........•......•.•.............•...•...........•.••.•••••........••.•.•.•.•.•.•.•.•.•.••..•• 5-91
LENO •.•••••.•..•.•.................................•....••••.•••••.•.....•...............•....••.•••••.•••••• 5-92
WUSTQ ...•..•.................•....•.•....•.••.•••............•.....................•.•.•••••••.•.•...••.... 5-93
LOCATE ••.•.....................................••••.••••.••••••.••.•.•.•...........•.•.....•...•....•...••• 4-76
LOCK0 ... 5-123
LOGQ ... 5-94
Logical Data ..••.•.•......................•.•....••..••••••.••.••••••••••••..•...••...••..•.•.•.•.•.••...... 2-7
LOOP ..•..•..•••...••..•••••••.•••••••••••.•....•.•.........................•...••.•.••••••••••••••••..•.•.••• 4-48
Loss of Carrier •••.•••••..••••••••.••.....••..•....•..........•.............•.....•••••••••••••••••••••••••• 6-1
LOWER0 ... 5-95
LTRIMQ .. 5-96
LUPDATE0 ··5-97

M

Macro(&) •..••..................................•................................•. '••••••.•.••.... 2-30
Mailboxes ..•.......•...... 3-2, 3-5, 3-15

NEWMAIL0 •...••••••••••••••••••...••••••••••••.•.••.••••••••••••••.••.••.....•.........•..•.••.• 5-104
USE ... 4-152
WAIT4MAIL0•...............••.......•.••.......•••••••.•.•••••.•.•.•........•.••.• 5-162

MAXQ ... 5-98
Maximum Files Open•................•....•..••••••.....•.•.•........•.•.•.•.•.......... 2-29
Maximum Program Size ••••••••••••••••.••••.•..........•.........•......••..••••.•••••••••••.•••• 2-18
MEM File Fonnat •.•••..••....•....•.....•.•..•..•.•....••..•.•... 6-8
Memo fields ••••••••••.•...••..•.•..•...•••.••.•••••••••••••••••••.•••••.••••••..•••..•........•........••• 2-34
Memory Allocation •.•••••••...••••.••.•••...•.....•............•.............••••••••••••••••••..•.... 2-17

lndex-7

Index

Memory Variable Domains
Hidden Variables .. 2-32
Parameter Passing ... 2-33
Private Variables ... 2-31, 4-88
Program Levels .. 2-31
Public Variables ... 2-32, 4-90

Memory Variable Size ... 2-7
Memvar Memory ... 2-17
Menu Entries ... 1-6
MESSAGEQ ... 5-99
MINQ .. 5-100
MODQ .. 5-101
MONTHQ ... 5-102
Multiuser File Access .. 3-3
Multiuser Programming .. 3-1

N

NDX File Format. ... 6-5
NDXQ ... 5-103
NEWMAIL0 ... 5-104
NEXTKEYQ .. 5-105
NMYUSERS0 .. 5-106
NOTE ... 4-77
Numeric Data .. 2-7
NUSERSO ... 5-107

0

OM CODE Size ... 1-5
OM UDATA Size .. 1-5
ON DISCONNECT .. 4-78
ON ERROR ... 3-9, 4-80
ON ESCAPE .. 4-83
ON KEY ... 4-84
ON NEWMAIL .. 3-18, 4-85
Operators

.AND . .. 2-11

.NOT ... 2-11

.OR .. 2-11
Addition .. 2-10
Character($) .. 2-11
Division ... 2-1 O

Index-a

Index

Equal•...........•.•.. 2-11
Exponentiation•... 2-10
Greater Than .. 2-11
Greater Than or Equal .. 2-11
Less Than ... 2-11
Less Than or Equal .. 2-11
Logical •... 2-10
Mathematical .. 2-1 O
Multiplication•... 2-1 o
Not Equal ...•........ 2-11
Order of evaluation•... 2-1 o
Relational .. 2-1 o
Subtraction ... 2-1 o

OPTDAT AO •... 5-108
oso ···5-109
OTHERWISE ... 4-47

p

Parameter Passing .. 2-13, 2-33, 4-46, 4-87
PARAMETERS ... 4-87
PCOLQ ..•...... 5-110
PICTURE

Function Symbols .. 4-17
Template Symbols•...•............................. 4-17
TRANSFORM0 ···5-139

Printer Control ... 3-21
Printer Sharing .. 3-2, 3-20
Printer Support•... 3-20

EJECT ... 4-51
GETLPT0 .. 5-71
PCOLQ -... 5-110
PROWQ ..•...... 5-113
SET CONSOLE .. 4-113
SET DEVICE•... 4-118
SET MARGIN .•.. 4-132
SET PRINT•...•....... 4-135
SET PRINTER TO ... 4-136
WAIT4LPT0 ··5-161

PRIVATE .. 4-88
Private Memory Variables ... 2-31
PROCEDURE .. 4-89

PROCUNE0 ··5-111

lndex-9

Index

PROCNAME0 ···5-112
Program Control Structures ... 2-12
Program memory .. 2-18
PROW0 ... 5-113
PUBLIC .. 4-90
Public Memory Variables .. 2-32

Q

QUIT .. 4-91

R

RAT0 ... 5-114
READ ... 4-92
READKEY0 ... 5-115
RECALL ... 4-96
RECCOUNTQ .. 5-117
RECNO0 ... 5-118
Record Locking ... 3-3
RECSIZE0 ... 5-119
RELEASE ... 4-97
RENAME .. 4-98
REPLACE •..•...................... 4-99
REPLICATEQ ... 5-120
RESTORE•.........................•...............................••.............................. 4-101
RETRY ... 4-80
RETURN ... 4-89, 4-102
RETURN TO MASTER .. 4-103
RIGHT0•...............................•.............................. 5-121
RJUST0 ... 5-122
RLOCKQ .. 5-123
ROUNDQ ... 5-124
ROWQ .. 5-125
RTRIM0 ... 5-126

s
SAVE .. 4-104
Save File Forrnat ... 6-8
Screen 1/0 ... 2-14
Searching for text .. 4-61

lndex-10

Index

SECONDS0•.......••...•... 5-127
SEEK ..••. ·-··4-105
SELECT•................•...........•.•.......•..••..... 4-106
SELECT0 ..•..................................••.•...............•....•.................•................. 5-128
SET ALTERNATE •..............•.••......•...•..•..•......................................•......... 4-107
SET BELL .•.••.•................•.................•............•..•...................................... 4-108
SET CENTURY•...............•.. : ..•...............•............•...... 4-109
SET COLOR•.•..•...... 4-110
SET CONFIRM•..•...... 4-112
SET CONSOLE ... 4-113
SET DATE ..•..........................•...... 4-114
SET DECIMALS ...•..........•...... 4-115
SET DELETED ...•............................... 4-116
SET DELIMITERS .. 4-117
SET DEVICE•...•..•.................................•. 4-118
SET DISCONNECT ... 4-119
SET DISPLAY RULES•...............................•.............................. 4-120
SET DIVIDE BY ZERO ..•.............•...... 4-121
SET EDITOR ...•...... 4-122
SET ESCAPE•................................•............................... 4-123
SET EXACT .. 4-124
SET EXCLUSIVE ... 4-125
SET FILTER•... 4-126
SET FIXED •.. 4-127
SET FORMAT TO•...•...... 4-128
SET FUNCTION•...•.•.•..•....•.•.•..•...... 4-129
SET INDEX•... 4-130
SET INTENSITY•... 4-131
SET MARGIN•.. 4-132
SET ORDER•......................•...•... 4-134
SET PRINT •.. 4-135
SET PRINTER TO•........•..........•......................................•........ 4-1 36
SET RELATION TO•... 4-138
SET SOFTSEEK .. 4-140
SET TYPEAHEAD .. 4-141
SET UNIQUE•.•....•.........•..............••............................•...... 4-1 42
SET UPDATE BELL ..•.......... 4-1 43

SETPRC0 ··5-129
SKIP•...............•.................•..............................•..............................•... 4-144
SOUNDEX0•... 5-130

SPACE0 ··5-132
SQRT0 ... 5-133
STATENAMEQ•...............••....•... 5-134
STORE •....••..........................•.........•................................•........................ 4-145

lndex-11

Index

STR0 ...•.....••............ 5-135
STUFFQ ..•................................ 5-136
Subroutines ... 2-13
SUBSTR0 .. 5-137
SUM ... 4-146
Syntax .. 2-4
Syntax Element Types .. 4-2

T

TBBS Command Switch ... 1-4
TBBS Menu Entries

/HP Opt Data Switch .. 1-6
/OU Opt Data Switch ... 1-6
/Q Opt Data Switch .. 1-6
/U Opt Data Switch .. 1-6
TYPE=200 Command ... 1-6

TDBS Compiler ... 1-9
TDBS Functions .. 5-1
TDBS Language

Commands and Functions .. 2-6
TDBS Program Structure .. 2-1
TDBS variable ... 2-5
TDBSOM Memory Requirements ... 1-5
TEXT ... ENDTEXT .. 4-147
Text File Display .. 4-1
Text Searching .. 4-61
TIMEQ .. 5-138
TRANSFORMQ .. 5-139
Transparent File Sharing ... 3-2, 3-4, 3-12
Transparent Screen Sharing .. 4-143
Transparent Screen Update .. 3-2, 3-4, 3-13
TYPE .. 4-148
TYPE0 ··················· .. 5-140

u
UANSIO ... 5-141
UAUTHQ .. 5-142
UIBMO ... 5-143
ULINEQ .. 5-144

ULOCATION0 ···5-145
ULPEEKO ··5-146

lndex-12

Index

ULPOKE0 .. 5-147
ULREPLACE0 ... 5-149
UMORE0 ...•..................................•..•... 5-150
UNAME0•...•. 5-151
Unexpected Disconnect ... 6-1
UNLOCK .. 4-149
UNOTES0 ···5-152
UPDATED0 ..•...... 5-153
UPPER0 ··5-154
UPRIV0 ··5-155
USE•............................•...•..................... 4-150
USE MAILBOX ... 4-152
USINGQ•.. 3-18, 5-156
UWIDTH0 .•.. 5-157

V

VAL0 .•..•....•..................................•.•...............•...................•..................... 5-158
VERSION0 ··5-159

w
WAIT ...•....•..•...•..•... 4-153
WAIT4FLOCKQ••.............•.. 5-1 60
WAIT4LPT0 ···5-161
WAIT4MAIL0 ···5-162
WAIT4RLOCK0 ... 5-163

V

YEAR0 ···5-164

z
ZAP•.••.•....................................•.......................................•................. 4-154

lndex-13

